FeedIndex
Filter: overcast  view all
Ellis Barstow, the protagonist in Nick Arvin's most recent novel, is a reconstructionist—an engineer who uses forensic analysis and simulation to piece together, in minute detail, what happened at a car crash site and why.

The novel is based on Arvin's own experiences in the field of crash reconstruction: Arvin thus leads an unusual double-life as a working mechanical engineer and a successful author of literary fiction. Following an introduction to Arvin's work from writer, friend, and fellow explorer of speculative landscapes Scott Geiger, Venue sat down with Arvin on the cozy couches of the Lighthouse Writers Workshop in Denver for an afternoon of conversation and car crash animations.




Flipping open his laptop, Arvin began by showing us a "greatest hits" reel drawn from his own crash reconstruction experience. Watching the short, blocky animations—a semi-truck jack-knifing across the center line, an SUV rear-ending a silver compact car, before ricocheting backward into a telephone pole—was surprisingly uncomfortable. As he hit play, each scene was both unspectacular and familiar—a rural two-lane highway in the rain, a suburban four-way stop surrounded by gas stations and fast-food franchises—yet, because we knew that an impact was inevitable, these everyday landscapes seemed freighted with both anticipation and tragedy.

The animations incorporated multiple viewpoints, slowing and replaying the moment(s) of impact, and occasionally overlaying an arrow, scale, or trajectory trace. This layer of scientific explanation provided a jarring contrast to the violence of the collision itself and the resulting wreckage—of lives, it was hard not to imagine, as well as the scattered vehicles.



As we went on to discuss, it is precisely this disjuncture—between the neat explanations provided by laws of physics and the random chaos of human motivation and behavior—that The Reconstructionist takes as its territory.

Our conversation ranged from the art of car crash forensics to the limits of causality and chance, via feral pigs, Walden Pond, and the Higgs boson. The edited transcript is below.

• • •

Nicola Twilley: Walk us though how you would build and animate these car crash reconstructions.

Nick Arvin: In the company where I worked, we had an engineering group and an animation group. In the engineering group, we created what we called motion data, which was a description of how the vehicle moved. The motion data was extremely detailed, describing a vehicle’s movement a tenth of a second by a tenth of a second. At each of those points in time we had roll, pitch, yaw, and locations of vehicles. To generate such detailed data, we sometimes used a specialized software program⎯the one we used is called PC-Crash⎯or sometimes we just used some equations in Excel.


A screenshot from the PC-Crash demo, which boasts that the "Specs database contains vehicles sold in North America from 1972 to the present," and that "up to 32 vehicles (including cars, trucks, trailers, pedestrians, and fixed objects such as trees or barriers) can be loaded into a simulation project."

When you’re using PC-Crash, you start by entering a bunch of numbers to tell the program what a vehicle looks like: how long it is, where the wheels are relative to the length, how wide it is, where the center of gravity is, how high it is, and a bunch of other data I’m forgetting right now.

Once you’ve put in the parameters that define the vehicle, it’s almost like a video game: you can put the car on the roadway and start it going, and you put a little yaw motion in to start it spinning. You can put two vehicles in and run them into each other, and PC-Crash will simulate the collision, including the motion afterward, as they come apart and roll off to wherever they roll off to.

We then fed that motion data to the animators, and they created the imagery.


A screenshot of PC-Crash's "Collision Optimizer."


As the demo promises, "in PC-Crash 3D, the scene can be viewed from any angle desired."

Often, you would have a Point A and a Point B, and you would need the animation to show how the vehicle got from one point to the other.

Point A might be where two vehicles have crashed into each other, which is called the “point of impact.” The point of impact was often fairly easy to figure out. When vehicles hit each other—especially in a head-on collision—the noses will go down and gouge into the road, and the radiator will break and release some fluid there, marking it. Then, usually, you know exactly where the vehicle ended up, which is Point B, or the “point of rest.” But connecting Points A and B was the tricky part.

Twilley: In real life, are you primarily using these kind of animations to test what you think happened, or is it more useful to generate a range of possibilities of which you can then look for evidence on the ground? In the book, for example, your reconstructionists seem to do both, going back and forth between the animation and the actual ground, generating and testing hypotheses.

Arvin: That’s right. That’s how it works in real life, too. Sometimes we would come up with a theory of what happened and how the vehicles had moved, and then we’d recreate it in an animation, as a kind of test. Generating a realistic-looking animation is very expensive, but you can create a crude version pretty easily. We’d watch the animation and say, “That just doesn’t look right.” You have a feel for how physics works; you can see when an animation just doesn’t look right. So, very often, we’d look at an animation and say to ourselves: we haven’t got this right yet.


Screenshot from a sample 3D car crash animation created by Kineticorp; visit their website for the video.

One of the challenges of the business is that when you’re creating an animation for court, every single thing in it has to have a basis that’s defensible. An animation can cost tens of thousands of dollars to generate, and if there is one detail that’s erroneous, the other side can say, “Hey, this doesn’t make sense!” Then the entire animation will be thrown out of court, and you’ve just flushed a lot of money down the toilet.

So you have to be very meticulous and careful about the basis for everything in the animation. You have to look at every single mark on the vehicle and try to figure out exactly where and how it happened.

In the novel there is an example of this kind of thinking when Boggs shows Ellis how, when looking at a vehicle that has rolled over, you literally examine each individual scratch mark on the vehicle, because a scratch can tell you about the orientation of the vehicle as it hit the ground, and it can also tell you where the vehicle was when the scratch was made, since asphalt makes one kind of scratch, while dirt or gravel will make a different type of scratch.

For one case I worked on—a high-speed rollover where the vehicle rolled three or four times—we printed out a big map of the accident site. In fact, it was so big we had to roll out down the hallway. It showed all of the impact points that the police had documented, and it showed all of the places where broken glass had been deposited as the vehicle rolled. We had a toy model of the car, and we sat there on the floor and rolled the toy from point to point on the map, trying to figure out which dent in the vehicle corresponded to which impact point on the ground.

I remember the vehicle had rolled through a barbed wire fence, and that there was a dent in one of the doors that looked like a pole of some kind had been jammed into the sheet metal. We figured it had to be one of the fence posts, but we struggled with it for weeks, because everything else in the roll motion indicated that, when the car hit the fence, the door with the dent in it would have been on the opposite side of the vehicle. We kept trying to change the roll motion to get that door to hit the fence, but it just didn’t make sense.

Finally, one of my colleagues was going back through some really poor-quality police photographs. We had scarcely looked at them, because they were so blurry you could hardly see anything. But he happened to be going back through them, and he noticed a fireman with a big crowbar. And we realized the crowbar had made the dent! They had crowbarred the door open.


Screenshots from sample 3D car crash animations created by Kineticorp; visit their website for the video.

Sometimes, though, even after all that meticulous attention to detail, and even if you believe you have the physics right, you end up playing with it a little, trying to get the motion to look real. There’s wiggle room in terms of, for example, where exactly the driver begins braking relative to where tire marks were left on the road. Or, what exactly is the coefficient of friction on this particular roadway? Ultimately, you’re planning to put this in front of a jury and they have to believe it.

Twilley: So there’s occasionally a bit of an interpretive leeway between the evidence that you have and the reconstruction that you present.

Arvin: Yes. There’s a lot of science in it, but there is an art to it, as well. Pig Accident 2, the crash that Ellis is trying to recreate at the start of my book, is a good example of that.

It’s at the start of the book, but it was actually the last part that was written. I had written the book, we had sold it, and I thought I was done with it, but then the editor—Cal Morgan at Harper Perennial—sent me his comments. And he suggested that I needed to establish the characters and their dynamics more strongly, early in the book.

I wanted an accident to structure the new material around, but by this time I was no longer working as a reconstructionist, and all my best material from the job was already in the book. So I took a former colleague out for a beer and asked him to tell me about the stuff he’d been working on.

He gave me this incredible story: an accident that involved all these feral pigs that had been hit by cars and killed, lying all over the road. Then, as a part of his investigation, he built this stuffed pig hide on wheels, with a little structure made out of wood and caster wheels on the bottom. They actually spray-painted the pig hide black, to make it the right color. He said it was like a Monty Python skit: he’d push it out on the road, then go hide in the bushes while the other guy took photographs. Then he’d have to run out and grab the pig whenever a car came by.



But there wasn’t any data coming out of that process that they were feeding into their analysis; it was about trying to convince a jury whether you can or can’t see a feral pig standing in the middle of the road.

Manaugh: That’s an interesting analogy to the craft of writing fiction, related to the question of what is sufficient evidence for something to be believable.

Arvin: Exactly. It’s so subjective.

In that case, my friend was working for the defense, which was the State Highway Department—they were being sued for not having built a tunnel under the road for the wild pigs to go through. In the novel, it takes place in Wisconsin, but in reality it happened in Monterey, California. They’ve got a real problem with wild pigs there.

Monterey has a phenomenal number of wild pigs running around. As it turned out, the defense lost this case, and my friend said that it was because it was impossible to get a jury where half the people hadn’t run into a pig themselves, or knew somebody who had had a terrible accident with a pig. The jury already believed the pigs were a problem and the state should be doing something about it.


Screenshot from a sample 3D car crash animation created by Kineticorp; visit their website for the video.

Geoff Manaugh: In terms of the narrative that defines a particular car crash, I’m curious how reconstructionists judge when a car crash really begins and ends. You could potentially argue that you crashed because, say, a little kid throws a water balloon into the street and it distracts you and, ten seconds later, you hit a telephone pole. But, clearly, something like a kid throwing a water balloon is not going to show up in PC-Crash.

For the purpose of the reconstructionist, then, where is the narrative boundary of a crash event? Does the car crash begin when tires cross the yellow line, or when the foot hits the brakes—or even earlier, when it started to rain, or when the driver failed to get his tires maintained?

Arvin: It’s never totally clear. That’s a grey area that we often ended up talking about and arguing about. In that roll-over crash, for example, part of the issue was that the vehicle was traveling way over the speed limit, but another issue was that the tires hadn’t been properly maintained. And when you start backing out to look at the decisions that the drivers made at different moments leading up to that collision, you can always end up backing out all the way to the point where it’s: well, if they hadn’t hit snooze on the alarm clock that morning

Twilley: Or, in your novel’s case, if they weren’t married to the wrong woman…

Arvin: [laughs] Right.

We worked on this one case where a guy’s car was hit by the train. He was a shoe salesman, if I remember right, and he was going to work on a Sunday. It just happened to be after the daylight savings time change, and he was either an hour ahead or an hour behind getting to work. The clock in the car and his watch hadn’t been reset yet.

He’d had this job for four years, and he’d been driving to work at the same time all those years, so he’d probably never seen a train coming over those tracks before—but, because he was an hour off, there was a train. So, you know, if he’d remembered to change his clocks…


Screenshots from sample 3D car crash animations created by Kineticorp; visit their website for the video.

Twilley: That reminds me of something that Boggs says in the book: “It’s a miracle there aren’t more miracles.”

Arvin: Doing that work, you really start to question, where are those limits of causality and chance? You think you’ve made a decision in your life, but there are all these moments of chance that flow into that decision. Where do you draw a line between the choices you made in your life and what’s just happened to you? What’s just happenstance?

It’s a very grey area, but the reconstructionist has to reach into the grey area and try to establish some logical sequence of causality and responsibility in a situation.

Twilley: In the novel, you show that reconstructionists have a particular set of tools and techniques with which to gain access to the facts about a past event. Other characters in the book have other methods for accessing the past: I’m thinking of the way Ellis’s father stores everything, or Heather’s photography. In the end, though it seems as though the book is ambivalent as to whether the past is accessible through any of those methods.

Arvin: I think that ambivalence is where the book is. You can get a piece of the past through memory and you can get a piece through the scientific reconstruction of things. You can go to a place now, as it is physically; you can look of a photograph of how it was; you can create a simulation of the place as it was in your computer: but those are all representations of it, and none of them are really it. They are all false, to an extent, in their own way.

The best I think you can hope to do is to use multiple methods to triangulate and get to some version of what the past was. Sometimes they just contradict each other and there’s no way to resolve them.


Screenshots from sample 3D car crash animations created by Kineticorp; visit their website for the video.

Working as a reconstructionist, I was really struck by how often people’s memories were clearly false, because they’d remember things that just physically were not possible. Newton’s laws of motion say it couldn’t have happened. In fact, we would do our best to completely set aside any witness testimony and just work from the physical evidence. It was kind of galling if there was not just enough physical evidence and you had to rely on what somebody said as a starting point.

Pedestrian accidents tended to be like that, because when a car runs into a person it doesn’t leave much physical evidence behind. When two cars run into each other, there’s all this stuff left at the point where they collided, so you can figure out where that point was. But, when a car runs into a person, there’s nothing left at that point; when you try to determine where the point of impact was, you end up relying on witness testimony.


Screenshots from a PC-Crash demo showing load loss and new "multibody pedestrian" functionality.

Twilley: In terms of reconciling memory and physical evidence—and this also relates to the idea of tweaking the reconstruction animation for the jury—the novel creates a conflict about whether it’s a good idea simply to settle for a narrative you can live with, however unreliable it might be, or to try to pin it down with science instead, even if the final result doesn’t sit right with you.

Arvin: Exactly. It sets up questions about how we define ourselves and what we do when we encounter things that conflict with our sense of identity. If something comes up out of the past that doesn’t fit with who you have defined yourself to be, what do you do with that? How much of our memories are shaped by our sense of identity versus the things we’ve actually done?

Twilley: It’s like a crash site: once the lines have been repainted and the road resurfaced, to what extent is that place no longer the same place where the accident occurred, yet still the place that led to the accident? That’s what’s so interesting about the reconstructionist’s work: you’re making these narratives that define a crash for a legal purpose, yet the novel seems to ask whether that is really the narrative of the crash, whether the actual impact is not the dents in the car but what happens to people’s lives.

Arvin: I always felt that tension—you are looking at the physics and the equations in order to understand this very compressed moment in time, but then there are these people who passed through that moment of time, and it had a huge effect on their lives. Within the work, we were completely disregarding those people and their emotions—emotions were outside our purview. Writing the book for me was part of the process of trying to reconcile those things.


Screenshot from a sample 3D car crash animation created by Kineticorp; visit their website for the video.

Manaugh: While I was reading the book, I kept thinking about the discovery of the Higgs boson, and how, in a sense, its discovery was all a kind of crash forensics.

Arvin: You’re right. You don’t actually see the particle; you see the tracks that it’s made. I love that. It’s a reminder that we’re reconstructing things all the time in our lives.

If you look up and a window is open, and you know you didn’t open it, then you try to figure out who in the house opened it. There are all these minor events in our lives, and we constantly work to reconstruct them by looking at the evidence around us and trying to figure out what happened.

Manaugh: That reminds me of an anecdote in Robert Sullivan’s book, The Meadowlands, about the swamps of northern New Jersey. One of his interview subjects is a retired detective from the area who is super keyed into his environment—he notices everything. He explains that this attention to microscopic detail is what makes a good detective as opposed to a bad detective. So, in the case of the open window, he’ll notice it and file it away in case he needs it in a future narrative.

What he tells Sullivan is that, now that he is retired, it’s as though he’s built up this huge encyclopedia of little details with the feeling that they all were going to add up to this kind of incredible moment of narrative revelation. And then he retired. He sounds genuinely sad—he has so much information and it’s not going anywhere. The act of retiring as a police detective meant that he lost the promise of a narrative denouement.

Arvin: That’s great. I think of reconstruction in terms of the process of writing, too. Reconstruction plays into my own particular writing technique because I tend to just write a lot of fragments initially, then I start trying to find the story that connects those pieces together.

It also reminds me of one of my teachers, Frank Conroy, who used to talk about the contract between the reader and the writer. Basically, as a writer, you’ve committed to not wasting the reader’s time. He would say that the reader is like a person climbing a mountain, and the author is putting certain objects along the reader’s path that the reader has to pick up and put into their backpack; when they get to the top of the mountain there better be something to do with all these things in their backpack, or they are going to be pissed that they hauled it all the way up there.

That detective sounds like a thwarted reader. He has the ingredients for the story—but he doesn’t have the story.


Screenshots from sample 3D car crash animations created by Kineticorp; visit their website for the video.

Twilley: In the novel, you deliberately juxtapose a creative way of looking—Heather’s pinhole photography—and Ellis’s forensic, engineering perspective. It seems rare to be equipped with both ways of seeing the world. How does being an engineer play into writing, or vice versa?

Arvin: I think the two things are not really that different. They are both processes of taking a bunch of little things—in engineering, it might be pieces of steel and plastic wire, and, in writing a novel, they’re words—and putting them together in such a way that they work together and create some larger system that does something pleasing and useful, whether that larger thing is a novel or a cruise ship.

One thing that I think about quite a bit is the way that both engineering and writing require a lot of attention to ambiguity. In writing, at the sentence level, you really want to avoid unintentional ambiguity. You become very attuned to places where your writing is potentially open to multiple meanings that you were not intending.

Similarly, in engineering, you design systems that will do what you want them to do, and you don’t have room for ambiguity—you don’t want the power plant to blow up because of an ambiguous connection.

But there’s a difference at the larger level. In writing, and writing fiction in particular, you actually look for areas of ambiguity that are interesting, and you draw those out to create stories that exemplify those ambiguities—because those are the things that are interesting to think about.

Whereas, in engineering, you would never intentionally take an ambiguity about whether the cruise ship is going to sink or not and magnify that!


Screenshot from a sample 3D car crash animation created by Kineticorp; visit their website for the video.

Twilley: I wanted to switch tracks a little and talk about the geography of accidents. Have you come to understand the landscape in terms of its potential for automotive disaster?

Arvin: When you are working on a case—like that rollover—you become extremely intimate with a very small piece of land. We would study the accident site and survey it and build up a very detailed map of exactly how the land is shaped in that particular spot. You spend a lot of time looking at these minute details, and you become very familiar with exactly how lands rolls off and where the trees are, and where the fence posts are and what type of asphalt that county uses, because different kinds of asphalt have different friction effects.

Manaugh: The crash site becomes your Walden Pond.

Arvin: It does, in a way. I came to feel that, as a reconstructionist, you develop a really intimate relationship with the roadway itself, which is a place where we spend so much time, yet we don’t really look at it. That was something I wanted to bring out in the book—some description of what that place is, that place along the road itself.

You know, we think of the road as this conveyance that gets us from Point A to Point B, but it’s actually a place in and of itself and there are interesting things about it. I wanted to look at that in the book. I wanted to look at the actual road and the things that are right along the road, this landscape that we usually blur right past.

The other thing your question makes me think about is this gigantic vehicle storage yard I describe in the novel, where all the crashed vehicles that are in litigation are kept. It’s like a museum of accidents—there are racks three vehicles high, and these big forklift trucks that pick the vehicles up off the racks and put them on the ground so you can examine them.


A vehicle scrapyard photographed by Wikipedia contributor Snowmanradio.

Manaugh: Building on that, if you have a geography of crashes and a museum of crashes, is there a crash taxonomy? In the same way that you get a category five hurricane or a 4.0 earthquake, is there, perhaps, a crash severity scale? And if so, then you can imagine at one end of it, the super-crash—the crash that maybe happens once every generation—

Arvin: The unicorn crash!

Manaugh: Exactly—Nicky and I were talking about the idea of a “black swan” crash on the way over here. Do you think in terms of categories or degrees of severity, or is every crash unique?

Arvin: I haven’t come across a taxonomy like that, although it’s a great idea. The way you categorize crashes is single vehicle, multiple vehicle, pedestrian, cyclist, and so on. They also get categorized as rollover collision, collision that leads to a rollover, and so on. So there are categories like that, and they immediately point you to certain kinds of analysis. The way you analyze a rollover is quite a bit different from how you analyze an impact. But there’s no categorization that I am aware of for severity.

I only did it for three years, so I’m not a grizzled reconstructionist veteran, but even in three years you see enough of them that you start to get a little jaded. You get an accident that was at 20 miles an hour, and you think, that’s not such a big deal. An accident in which two vehicles, each going 60 miles an hour, crash head-on at a closing speed of 120 miles an hour—now, that’s a collision!


Screenshot from a sample 3D car crash animation created by Kineticorp; visit their website for the video.

You become a little bit of an accident snob, and resisting that was something that I struggled with. Each accident is important to the people who were in it. And, there was a dark humor that tended to creep in, and that worried me, too. On the one hand, it helps keep you sane, but on the other hand, it feels very disrespectful.

Twilley: Have you been in a car accident yourself?

Arvin: I had one, luckily very minor, accident while I was working as reconstructionist—around the time that I was starting to work on this book. I heard the collision begin before I saw it, and what I really remember is that first sound of metal on metal.

Immediately, I felt a lurch of horror, because I wasn’t sure what was happening yet, but I knew it could be terrible. You are just driving down the road and, all of a sudden, your life is going to be altered, but you don’t know how yet. It’s a scary place—a scary moment.



Twilley: Before we wrap up, I want to talk about some of your other work, too. An earlier novel, Articles of War, was chosen for “One Book, One Denver.” I’d love to hear about the experience of having a whole city read your book: did that level of public appropriation reshape the book for you?

Arvin: That’s an interesting question. There were some great programs: they had a professional reader reading portions of it, and there was a guy who put part of it to music, so it was reinterpreted in a variety of ways. That was really, really fun for me. It brought out facets of the book that I hadn’t been fully aware of.

The whole thing gave me an opportunity to meet a lot of people around the city who had read the book. I did a radio interview with high school students who had read the book—this was when we were deeper into the Iraq war and there were a lot of parallels being drawn with that war. And these were kids who were potentially going off to that war, so that was very much on their mind.

You had this concentrated group of people looking at the book and reading it and talking about it, and everybody’s got their own way of receiving it. It helped me see how, once a book is out there, it isn’t mine anymore. Every reader makes it their own.

Manaugh: Finally, I’m interested in simply how someone becomes a reconstructionist. It’s not a job that most people have even heard of!

Arvin: True. For me, it was a haphazard path. Remember how we talked earlier about that gray area between the choices you made in your life and what’s just happened to you?

I have degrees in mechanical engineering from Michigan and Stanford. When I finished my Masters at Stanford, I went to work for Ford. I worked there for about three years. Then I was accepted into Iowa Writer’s Workshop, so I quit Ford to go to Iowa. I got my MFA, and then I was given a grant to go write for a year. My brother had moved to Denver a year earlier, and it seemed like a cool town so I moved here. Then my grant money ran out, and I had to find a job.

I began looking for something in the automotive industry in Denver, and there isn’t much. But I had known a couple people at Ford who ended up working in forensics, so I started sending my resume to automobile forensics firms. It happened that the guy who got my resume was a big reader, and I had recently published my first book. He was impressed by that, so he brought me in for an interview.

In that business, you write a lot of reports and he thought I might be helpful with that.


Screenshots from sample 3D car crash animation created by Kineticorp; visit their website for the video.

Twilley: Do you still work as an engineer, and, if so, what kinds of projects are you involved with?

Arvin: I work on power plants and oil and gas facilities. Right now, I am working on both a power plant and an oil facility in North Dakota—there’s lots of stuff going on out there as part of the Bakken play. It’s very different from the forensics.

Twilley: Do you take an engineering job, then quit and take some time to write and then go back into the engineering again? Or do you somehow find a way to do both?

Arvin: I do both. I work part time. Part-time work isn’t really easy to find as an engineer, but I’ve been lucky, and my employers have been great.

Engineers who write novels are pretty scarce. There are a few literary writers who started out in engineering but have gotten out of it—Stewart O’Nan is one, George Saunders is another. There’s Karl Iagnemma, who teaches at MIT. There are a few others, especially in the sci-fi universe.

I feel as though I have access to material—to a cast of characters and a way of thinking—that’s not available to very many writers. But the engineering work I’m doing now doesn’t have quite the same dramatic, obvious story potential that forensic engineering does. I remember when I first started working in forensics, on day one, I thought, this is a novel right here.
While passing through Wisconsin, Venue made sure to hike part of the Ice Age National Scenic Trail. The trail both marks and follows the outer edge of the huge glacier that once covered nearly all of what is now the U.S. Midwest and Northeast: a wall of ice that squashed and deformed the ground below, from the Plains to Long Island. This lost, near-permanent winter left deep traces, at all spatial scales, still visible in the existing landscape today.



The Trail, as described by its National Park Service curators, is "a thousand-mile footpath—entirely within Wisconsin—that highlights these Ice Age landscape features while providing access to some of the state's most beautiful natural areas."

It stretches from the waters of Lake Michigan (itself a glacial feature) in coastal Door County down nearly to Illinois, then back up again, circumventing the hauntingly named "Driftless Area," before cresting mid-state, where it cuts an abrupt and jagged westerly line all the way to the border with Minnesota.



The small section Venue was able to visit—just one tiny sliver of the thousand-mile trail, with literally hundreds of trailheads scattered throughout the state—was the Baraboo Hills Chapter at Devil's Lake State Park. It is roughly one hour east-northeast from the state capitol in Madison.

The park is part of what is known as a "National Scientific Reserve," set aside not for preservation, but for its taxonomic value in cataloging the various edge-conditions of a now-vanished glacier.



It is an often surreal landscape, with sudden hills, standing stones, and deeply crevassed cliffs coming out of the ground for no apparent geologic reason. There are eskers and drift plains, chimneys and outwash aprons, erratics and bluffs.


From Geology of Ice Age National Scientific Reserve of Wisconsin, NPS Scientific Monograph No. 2 by Robert F. Black

For good or for bad, we arrived on a cloudy, quite humid day, and we were by no means alone. The park was full of families and other hikers, including a few small groups of rock climbers who had come out to scale the pinnacles of hills that sprayed upward with finger-like columns of lichen-covered stone.



This was the very edge of the glacier, a limit point where one landscape condition—and one very different climate—hit another.



While it offered a nice-enough hike—Wisconsin is an extraordinarily beautiful state, but its vistas suffer from comparison to the National Parks further west—the trail was far more interesting from the point of view of its curatorial intentions, rather than, say, its athletic possibilities or even its perfectly charming views.



In other words, it's the idea of assembling the outer edge of a lost landscape—an entire lost glacial era—into a contemporary narrative trail way that is so compelling. The Ice Age Trail, like other super-trails in the U.S, such as the Appalachian or the Pacific Crest, could conceivably be hiked over the course of weeks, but it comes with the explicit notion that hikers would thus experientially familiarize themselves with the topography of the Ice Age.


From "The Pleistocene of Wisconsin" by Robert F. Black, Geology of Ice Age National Scientific Reserve of Wisconsin, NPS Scientific Monograph No. 2

The terrain itself becomes an exhibition you wander through, an outdoor museum of moraines, drumlins, lakes, forests, and hills. Some of the lone rocks are totemic or pagoda-like, overlooking the thickets and small ponds below like earthen sentinels.

From Geology of Ice Age National Scientific Reserve of Wisconsin, NPS Scientific Monograph No. 2 by Robert F. Black

The Ice Age Trail Alliance hosts hiking maps on their website, including information for local landowners who might be interested in allowing access to their property in order to host part of the still-expanding networks of trails.



Venue took a detour north into the periphery of greater Los Angeles to drive across, through, and back again over the San Andreas Fault, a slow motion crash between continents. Rocks roil like rough seas in an engraving by Hokusai, a great wave of planetary energy curling stone into ribbons and bending whole landscapes toward the sky.



Though several guidebooks exist for would-be fault explorers, the San Andreas is not the giant, Grand Canyon-esque crack in the ground of our James Bond-fueled imagination. For most of its length, indeed, the fault is only visible through its traces: offset streams and channels, ridges, scarps, discontinuities, sags, and even mudpots.

The Palmdale Road Cut—a 90-foot slice through lakebed sediments that have spent millions of years being squeezed and torqued by the fault's slips and shear—is thus a rare window onto geologic force, frozen in motion.

The drive itself is very easy, heading up the 14—the Antelope Valley Freeway—from Los Angeles, where, just north of the junction with Avenue S, there it is: the San Andreas, inadvertently peeled open and revealed to the world by road crews as they blasted through rock to make the freeway.



The easiest way to visit on foot, we found, was to exit there, head up to the nearby Pelona Vista Park, and leave our car in the parking lot.

Then—admittedly trespassing, so please beware should you try this yourself—it's just a short, uneven walk down a well-worn network of trails and skirting some ineffectual, sagging barbed wire to overlook the freeway, where you can stand above this artificial chasm between continents as if in a Casper David Friedrich painting.



You can look down at and listen to cars droning by, seemingly unaware of their regal surroundings.

If you don't know what you're looking for, you could drive though this extraordinary spot without ever knowing what you've missed.



Standing amidst this wonderfully detailed incision, cut straight through the arid scar tissue of continental jostling, it has the feel of a tectonic amphitheater—more stunning than anything at Delphi—oracular in its revelation of how the earth moves, heaves, and behaves, the planet always rushing toward future arrangements that geologists can only try, approximately, to predict.



Immeasurably massive forces strain upward, bulging the ground itself and reducing a million years' worth of sedimentary accretion to dust and gravel. Small rocks pop out from cracks and roll down the hillside, where plants struggle to grow along the dry and irregular terrain.



Hopping back in the car, Venue continued to drive the fault, passing the California Aqueduct, a megastructural monument to water, another of the powerful natural forces whose movements have redesigned the state's landscape wholesale.



About forty minutes southwest of Palmdale, two tiny signs, all but literally in the middle of nowhere, stand on the side of a road so uncrowded we passed only one other car the entire time we drove on it, announcing the fault's subterranean presence.



Here, the fault spreads out into a broad and picturesque valley—



—where the signs marking this geologic feature look both absurd and suitably poetic, as if tourists from all over the country or world might, just might, come to California in search of its signature geologic landmark.



We pulled over here to walk around for a while, at a small bend in Pallet Creek Road, taking pictures and wandering up the nearby hills. A ruined farmhouse of some kind stood off the road to the north, and the wind picked up considerably as we looked over the vista.

The weather began to change and the looming masses of clouds blowing down from the San Gabriels seemed to mimic, in their own convolutions and shapes, the weird geologies we knew were below us somewhere, an earth layered like a deck of cards that, at any moment, might reshuffle themselves in a coming earthquake.

Oddly enough, there is a Benedictine monastery built right here on the Fault: the coincidentally named St. Andrew's Abbey, where, of all things, the monks specialize in ceramics, molding and firing the crumbled clay of a tectonic fault into objects.

There is something truly remarkable in this notion—whether or not the monks, in fact, use local clay—of transmuting the negative space of a fault line into positive things with mass that you can hold and look upon, as if extracting material objects from the void and turning this vulnerability into a generator for new forms yet to come.

Top image: Hokusai, The Great Wave off Kanagawa, via Wikipedia.
"Gradually, America's management of its wild animals has evolved, or maybe devolved, into a surreal kind of performance art," reflects Jon Mooallem, author of Wild Ones: A Sometimes Dismaying, Weirdly Reassuring Story About Looking at People Looking at Animals in America.


Detail from the cover of Jon Mooallem's Wild Ones.

This is a surprisingly generous statement, considering that Mooallem has spent the last few years researching a harrowing litany of accidental extinctions and unintended consequences—including a surreal day spent chasing ex-convict Martha Stewart as she and her film crew pursued polar bears across the Arctic tundra—in order to untangle the complicated legal and emotional forces that shape America's relationship with wildlife.

Despite the humor, the stakes are high: half the world's nine million species are expected to be extinct by the end of this century, and, as Mooallem explains, many of those that do survive will only hang on as a result of humans' own increasingly bizarre interventions, blurring the line between conservation and domestication to the point of meaninglessness.

On a foggy morning in San Francisco, Venue met Mooallem for coffee and a conversation that ranged from tortoise kidnappings to polar bear politics. An edited transcript of our conversation follows.

• • •

The polar bear tourism industry in Churchill, Manitoba, relies on a dozen specially built vehicles called Tundra Buggies that take tourists and their cameras out to see the world's southernmost bear population. Photo: Polar Bears International.

Geoff Manaugh: In the book, you’ve chosen to focus on two very charismatic, photogenic, and popular animals: the whooping crane and the polar bear.

Jon Mooallem: They’re the celebrities of the wildlife world.

Manaugh: Exactly. But there’s a third example, in the middle section of the book, which is a butterfly. It’s not only a very obscure species in its own right, but it’s also found only in a very obscure Bay Area preserve that most people, even in Northern California, have never heard of. What was it about the story of that butterfly, in particular, that made you want to tell it?

Mooallem: I thought it would be really interesting to go from the polar bear, which is the mega-celebrity of the animal kingdom, to its complete opposite—to something no one really cared about—and to see what was at stake in a story where the general public doesn’t really care about the animal in question at all. It turned out that there was a hell of a lot at stake for the people working on that butterfly.


Lange's Metalmark butterfly (Apodemia mormo langei). Photo: U.S. Fish & Wildlife Service.

It’s called the Lange’s Metalmark butterfly, and it’s about the size of a quarter. As you said, it only lives in this one place called Antioch Dunes, which is about sixty-seven acres in total. It is surrounded by a waste-transfer station, a sewage treatment plant, and a biker bar, and there’s a gypsum factory right in the middle that makes wallboard. You can’t even walk across the preserve, actually, because of this giant industrial facility in the middle of it.

In fact, the outbuilding where Jaycee Dugard, the kidnapping victim, was held is just round the corner.


Counting butterflies at Antioch Dunes. Photo: Jon Mooallem

It’s a forgotten place. It’s not the sort of place you’d expect to spend a lot of time in if you’re writing a book about wildlife in America.

On top of all that, not only is the butterfly the animal in the book that people won’t have heard of, or that they won’t know much about, but it’s also the one that I didn’t know very much about, going in. Looking back on it, it was somewhat audacious to say in my book proposal that a third of the book was going to be the story of this butterfly, because I really knew almost nothing about it! But it ended up being by far the most fascinating story, for me. That’s at least partly because I had the sense that I was looking at things that no one had ever looked at and talking to people who no one had ever talked to before.



Jana Johnson leads a captive breeding project for the Lange's Metalmark from inside America's Teaching Zoo, where students in Moorpark College's Exotic Animal Training and Management degree program learn their trade. Photos: (top) Jason Redmond, Ventura County Star; (bottom) Louis Terrazzas, U.S. Fish & Wildlife Service.

It also seemed as though, when you’re working in an environment like that on a species that doesn’t get a lot of support or interest, you’re confronting a lot of the fundamental questions of environmentalism in a much more dramatic way. You have to work harder to sort through them, because it’s difficult to make simple assumptions about what you’re doing—that what you’re doing is worthwhile and good—when you don’t have anyone telling you that, and when it looks as hopeless as it looks with the Lange’s Metalmark.

Maybe hopeless is too strong a word—but you can’t transpose romantic ideas about wilderness and animals onto the situation, because it’s just so glaringly unromantic. You can’t stand in Antioch Dunes and take a deep breath of fresh air and feel like you’re in some primordial wilderness. You don’t have that luxury.

The other thing that was interesting about the butterfly story was the fact that it was happening on such a small scale. The butterfly’s always just lived in this one spot—it’s the only place it lives on earth—so you could look at what happened to this small patch of land over a hundred years and meet all the people who came in & out of the butterfly’s story. It was quite self-contained. It was almost like a stage for a play to happen on.


Butterflies on display in cases at the Carnegie Museum of Natural History. Photo: Venue.

Manaugh: Harry Lange, for whom the butterfly is named, has a great line that seems to sum up so much of the sadness and stupidity in the human relationship with wild animals. He said, after exterminating the very last of the Xerces Blue butterfly: “I always thought there would be more…”

Mooallem: Right—and that was the other extraordinary thing about the butterfly story.

When I started working on the book, I had no idea about the history of butterfly collectors in the Bay Area. Apparently, the Bay Area was a big hotspot for butterflies, because of the microclimates here. It can be ten or fifteen degrees hotter in the Mission District than it is at the beach; there can be fog in some places and not others; and all of this creates a sort of Galapagos Island effect. The whole peninsula is peppered with these different micro-populations of butterflies because of the different microclimates.

Meanwhile, in the early twentieth century, at a time when the Audubon Society and other groups were being founded and there was a turn against the overhunting of species, it still seemed OK and sort of benign to collect butterflies. It wasn’t considered “hunting.” You could transfer all of that ambition to conquer nature and discover new things to collecting butterflies. You’re here at the very end of North America, where the country finally runs out of room, and now you’re starting to run out of animals too, but there were still enough butterflies to collect and name after yourself.


The Xerces Blue is the first butterfly in America known to have gone extinct due to human disturbance. Photo: Andrew Warren/butterfliesofamerica.com

The story of Xerces Blue, which is the butterfly that Lange thought there would always be more of, is just incredible. Back then, past 19th Avenue, it was all sand dunes. I actually met a friend of Lange’s, named Ed Ross, who was a curator at the California Academy of Sciences; he had to be in his late eighties or early nineties.

He told me about growing up as a kid here and taking the streetcar out to 19th Avenue and just getting out with his butterfly net and walking to Ocean Beach over the dunes. Occasionally you’d see a hermit, he said.


Richmond Sand Dunes (1890s). Photo: Greg Gaar Collection, San Francisco, CA, via FoundSF.


Dunes along Sunset Boulevard, San Francisco (1938). Photo: Harrison Ryker, via David Rumsey Map Collection.

That generation of butterfly nuts who were living in San Francisco in the early twentieth century saw that habitat being erased in front of their eyes.

That backstory really helped to shape my perception of a lot of things in the book by elongating the timescale. It brought up the whole idea of shifting baselines—this gradual, generational change in our accepted norm for the environment—and all these other, deeper questions that wouldn’t have come up if I’d just followed Martha Stewart around filming polar bears, as I do in the first section of the book. It’s a very different experience to zoom out and take in the entirety of a story as I did with the Lange’s Metalmark, which is why I think I enjoyed it so much.

Nicola Twilley: It’s interesting to note that Ed Ross doesn’t actually figure in the book, and that, elsewhere, you allude to several intriguing stories in just a sentence or two—to things like the volunteers who count fish at the Bonneville Dam. Instead, you deliberately keep the focus on the bear, the butterfly, and the bird. But what about all the animals or all the stories that didn’t make it into the book? Were there any particular gems that you had to leave out or that you wish you had kept?

Mooallem: There were tons! The fish counting thing is a perfect example.


Janet the fish counter, hard at work. Photo: Jon Mooallem.

I spent a day at the Bonneville Dam, and it was completely surreal. I barely touch on it in the book, but the question of how to get fish around the dam is a really interesting design problem. There have been different structures that were built and then shown not to work, and so they’ve had to adapt them or retrofit them, and that’s ended up creating all new problems that need to have something built to solve them, and so on.

The government has actually moved an entire colony of seabirds that were eating the fish at the mouth of the river. The fish that got through the dam would get to the mouth of the Columbia River, but then the double-crested cormorants would eat them all. So the government picked up the birds and moved them to another island in the river.

I felt as though, normally, when you hear about these kinds of stories, you just scratch the surface. We’re so used to hearing endangered species stories in very two-dimensional, heroic ways, where so-and-so is saving the frog or whatever, and I just knew that it couldn’t be that easy. If it was that straightforward—if you could just go out and pull up some weeds and the butterfly would survive—it wouldn’t be very meaningful work. That was the space I really wanted to get into—the muddiness where things don’t work out the way we draw them on paper.

At the same time, I was able to mention a lot of these bizarre stories—but, as you say, almost as an aside. Each one of those things could have been a much longer, deeper story. Take, for example, the “otter-free zone,” which was this incredible saga: the government was reintroducing otters in Southern California and, because of complaints from fishermen and the oil industry, they needed to control where the otters would swim. A biologist would have to go out in a boat with binoculars to look for otters that were inside the otter-free zone and, if he saw them, he’d have to try to capture them when they were sleeping and move them. It was just a hilarious, miserable failure. I spent a lot of time reporting on that—talking to the biologist and hearing what that work was actually like to have to do—yet, in the end, I only mention it. But I know there’s a deeper story there.


Sea-otter in Morro Bay, California, just north of the former otter-free zone. Photo: Mike Baird.

In fact, there’s a section of the book where I rattle off a bunch of these examples—there’s the project to keep right whales from swimming into the path of natural gas tankers, and there’s the North Carolina wolves and their kill-switch collars, and so on. Each one of those is its own Bonneville Dam story—its own complicated saga of solutions and newer solutions to problems that the original solutions caused. You could really get lost in that stuff. I did get lost in all that stuff for a long time.

This is my first book, of course, and I feel as though that’s the joy and the luxury of a book—that you do have the time and space to get lost in those things for a little while.

Manaugh: It’s funny how many of those kinds of stories there are. I remember an example that Liam Young, an architect based in London, told me. He spent some time studying the Galapagos Islands, and he told me this incredible anecdote about hunters shooting wild goats, Sarah Palin-style, from helicopters, because the goats had been eating the same plants that the tortoises depended on.


BBC Four footage of the Galapagos Island goat killers.

But, at one point, some local fishermen were protesting that the islands’ incredibly strict eco-regulations were destroying their livelihood, so they took a bunch of tortoises hostage. What was funny, though, is that all the headlines about this mention the tortoises—but, when you read down to paragraph five or six, it also mentions that something like nineteen scientists were also being held hostage. [laughter] It was as if the human hostages weren’t even worth mentioning.

Mooallem: [laughs] Wow. That reminds me of one story I saw but never followed up on, about some fishermen in the Solomon Islands who had slaughtered several hundred dolphins because some environmental group had promised them money not to fish, but then didn’t deliver the money.

Twilley: When you invest an animal with that much symbolic power, the stakes get absurdly high.

Mooallem: Exactly—look at the polar bear. Of course, the polar bear has lost a lot of its cachet. I don’t know whether you saw the YouTube video that Obama put out to accompany his big climate speech in June, but I was surprised: there wasn’t a single polar bear image in it. It was all floods and storms and dried-up corn. Four years ago, there would have definitely been polar bears in that video.

Today, though, the polar bear is just not as potent a symbol. It’s become too political. It doesn’t really resonate with environmentalists anymore and it ticks off everyone else. What’s amazing is that it’s just a freaking bear, yet it’s become as divisive a figure as Rush Limbaugh.



From "Addressing the threat of Climate Change," a video posted on the White House YouTube channel, June 22, 2013.

Manaugh: Speaking of politics, it feels at times as if the Endangered Species Act—that specific piece of legislation—serves as the plot generator for much of your book. Its effects, both intended and surreally unanticipated, make it a central part of Wild Ones.

Mooallem: It really does generate all the action, because it institutionalizes these well-meaning sentiments, and it makes money and federal employees available to act on them. It amps up the scale of everything.

The first thing that I found really interesting is the way in which the law was passed. It was pretty poorly understood by everyone who voted on it. The Nixon administration saw it as a feel-good thing. It was signed in the doldrums between Christmas and New Year’s, almost as a gift to the nation and a kind of national New Year’s resolution rolled into one. And it was passed in 1973, as well, during both Vietnam and Watergate, so the timing was perfect for something warm and fuzzy as a distraction.

But most people never read the law and they didn’t realize that some of the more hardcore environmentalist staff-members of certain congressmen had put in provisions that were a lot more far-reaching than any of the lawmakers imagined. Nixon didn’t understand that it would protect insects, for example. It was really just seen as protecting charismatic national symbols, in completely unspecified, abstract ways.


Nixon signing the Endangered Species Act. AP photo via Politico.

In the preamble to the law itself—I don’t remember the exact quote—it says something like: “We’re going to protect species and their ecosystems from extinction as a consequence of the economic development of the nation.” Passing a law that is supposed to put a check on the development and growth of the nation—all the things government is supposed to promote—is pretty astounding.

Obviously, the law’s done a tremendous amount of good, but I also think that, because of its almost back-room origins, there is a kind of sheepishness and reluctance among a lot of conservationists to draw on it to its full extent. I don’t spend a lot of time in the book on government policy, but, to get a little wonky for a second, I do find it interesting that there’s this hesitancy to really use the Endangered Species Act as a cudgel.

Groups like Center for Biological Diversity that basically spend their time suing the government to hold it to the letter of the Endangered Species Act, are quite controversial among other environmentalists for that very reason. There’s a feeling that it is too dangerous to really unleash the full power of the law. In some ways, I completely understand that, because there is no way to work these questions out. It’s not a zero sum game.

But the Endangered Species Act is always under attack. It’s always a political talking point to be able to say: we’re spending hundreds of thousands of taxpayer dollars to study slugs or whatever.

Twilley: Then there’s the fact that it’s written so as to protect entire ecosystems, rather than just the animals themselves.

Mooallem: Exactly. To me, that’s actually the even more interesting part of this. Rudi Mattoni, the lepidopterist, pointed this out to me, and it’s why he became so disillusioned with the butterfly preservation work he was doing. The law says that it is supposed to protect endangered species and the ecosystems that they depend on. He and a lot of other people feel that the approach has been completely centered on species themselves at the expense of the larger ecosystem.

Even before the Lange’s Metalmark was listed as endangered, the Antioch Dunes ecosystem had been unraveling for decades. It was already pretty much destroyed. But, using the power of the Endangered Species Act, using the power of the federal government, and using a Fish & Wildlife Service employee whose job is just pulling weeds and keeping the plants that the butterfly needs in place, we’ve been able to maintain the butterfly there, in a place where it doesn’t really belong anymore because the landscape has changed so much.

I guess you could say that one of the weaknesses of the law—or you could say that’s actually the strength of the law, because it has protected a species from extinction even long after it should have been extinct, at least in an ecological sense. But it does bring up questions about what we are actually trying to accomplish.


Churchill's "polar bear jail," where bears that come into town are kept in one of twenty-eight cells, and held without food for up to a month so that they don't associate human settlements with a food reward. Photo: Bob and Carol Pinjarra.


At the end of its "sentence," if the Hudson Bay still hasn't frozen over, the bear is drugged and airlifted by helicopter to be released north of town, closer to where the ice first forms. Photo: Nick Miroff, via Jon Mooallem.

Manaugh: Preservation of an entire ecosystem, if you were to follow the letter of the law, would require an absolutely astonishing level of commitment. Saving the polar bear, in that sense, means that we’d have to restore the atmosphere to a certain level of carbon dioxide, and reverse Arctic melting, which might mean reforesting the Amazon or cutting our greenhouse gas emissions to virtually nothing, overnight. It’s inspiringly ambitious.

Mooallem: As I try to explain in the book, that’s basically why the polar bear became so famous, for lack of a better word. It became an icon of climate change, because in a shrewd, “gotcha” kind of way, the Center for Biological Diversity and other environmentalists chose the polar bear as their tool to try to use the Endangered Species Act to put pressure on the Bush administration to deal with climate change as a much larger problem.

Even though the environmental groups themselves admitted it was very unlikely that this would work, they were trying to make the case that the polar bear is endangered, that the thing that is endangering it is climate change, and that the government is legally compelled by the Endangered Species Act to deal with this threat to an Endangered Species. So, if you accept that the polar bear is endangered, then you have to accept the larger responsibility of dealing with climate change.

It’s a completely back-door way to try to force the government to act on climate change, but the result was that the polar bear ended up with this superstar status and popular recognition among the general public, which I found amazing.


The not-sufficiently-charismatic Kittlitz's Murrelet. Photo: Glen Tepke, National Audubon Society.

What’s also interesting is that the Center for Biological Diversity had actually tried this tactic once before, using a bird called the Kittlitz’s Murrelet, and it completely failed. There’s this thing called the “warranted but precluded” category of the Endangered Species Act, which is basically a loophole.

If a species is endangered but the Fish & Wildlife Service or another agency feels that they can’t deal with it right now, they can just say, “Yes, we agree that this species is endangered, so we’re going to put it in a waiting room called ‘warranted but precluded,’ and we’ll get to it as soon as we’re done cleaning up this other mess.” Because there are so many species that are endangered and the threats keep escalating, the government has been able to shunt species after species onto that “warranted but precluded” list.

When the Center for Biological Diversity and a few other groups tried to pressure the administration to do something about climate change by getting the Kittlitz’s Murrelet listed as an Endangered Species, the government just used the “warranted but precluded” loophole, which also meant they didn’t have to rule on climate science or make any really difficult decisions.

But the Kittlitz’s Murrelet failed to inspire any kind of public support, so there was no pressure on the administration to do anything. The environmentalists who were petitioning to get the polar bear listed as part of their strategy to deal with climate change knew that the government could very easily apply the same loophole to the bear and duck the whole issue of climate science, again.


During the public comment period preceding the polar bear's accession to Endangered Species status, Secretary of the Interior Dirk Kempthorne received half a million letters and postcards, many of which were from children. Via Jon Mooallem.

The Center for Biological Diversity realized that they needed a public relations strategy as well as a legal strategy, and, by picking the polar bear, they knew that they could put the Bush administration on the spot. The Bush administration couldn’t just put the polar bear in this infinite waiting room, because people would be upset.

Kids started writing letters to the Secretary of the Interior begging him to save the polar bear. They were sending in their own hand-drawn pictures of bears, drowning.


A 2007 letter from a child to Dirk Kempthorne included this drawing of a drowning polar bear being eaten simultaneously by a shark and a lobster. Via Jon Mooallem.

In some ways, the premise of the book is that our emotions and imaginations about these animals dictates their ability to survive in the real world, and this story was a particularly fascinating—not to mention peculiar—example in which all this sentimental gushing over polar bears, which, on the face of it, seems mawkish and kind of silly, was the lynchpin in a legal proceeding. In that case, our emotions about this animal really did matter.

Of course, there’s a whole other part of the story where the administration got around it anyway. But, for a while, it mattered.

Twilley: In the book, you encounter a whole range of attitudes that people hold toward wild animals and conservation, and the journeys that they take from idealism to pragmatism to cynicism and despair. There’s William Temple Hornaday, for example, who gets ever more ambitious and optimistic, and who goes from being a taxidermist who hunted buffalo to founding the National Zoo, and then on to a project to restock the Great Plains.


Manikin for Male American Bison, Hornaday (1891), via Hanna Rose Schell; Hornaday's innovative taxidermy "Buffalo Group," originally displayed at the U.S. National Museum (now the Smithsonian), and since relocated to Fort Benton, Montana (photo: Pete and the Wonder Egg).

Then there’s Rudi Mattoni, the lepidopterist you were talking about, who starts out as a pioneer of captive breeding and reintroduction, and then gives up and moves to Buenos Aires to catalog plants and animals so that at least we will have a record of what we’ve destroyed. Through the process of visiting all these places and spending time talking with all these people, did your own attitude toward wild animals and conservation evolve or shift at all?

Mooallem: What was great about writing the book was being able to absorb all these different perspectives. I met all these different people, some of whom are incredibly jaded and some of whom are incredibly idealistic, but, when you step back, you see that, as a species, we’re all in this struggle together, and this incredibly diverse group of people are all doing their best to grab hold of some piece of it and try to solve it.

That was where the “weirdly reassuring” part of my book title came from—from looking at conservationists as a breed, rather than just an individual person. If I had just written a book about the many, many old, battle-scarred conservationists who are extremely bitter and who claim to have given up, I think I would have ended up being really depressed. I think that it’s important to remember that there are people at all different points on that spectrum of idealism and disillusionment and they all serve a purpose. I identified with all of them, and that kept me from identifying too strongly with any one of them.


William Temple Hornaday's table of wild animal intelligence. Via Jon Mooallem.

I wasn’t trying to advocate any particular position or solve any problems with this book. I actually didn’t realize this till the end, but what I was really doing was just trying to figure out how you’re supposed to feel about all this. How should you feel and respond when you look at everything that’s going on with the environment? What I tried to do is collect the attitudes and emotions of the people that I met and than to take what was useful.

I would get off the phone, for instance, with someone like Mattoni and he would be so horribly pessimistic about everything, yet somehow I would feel slightly exhilarated by it. Here’s someone who is so close to these questions—really big questions about what the place of humans on earth should be—and he’s just totally beaten down by them. But he’s in contact with them. He’s living in engagement with those kinds of questions, and there was something beautiful about that. It doesn’t necessarily make me hopeful, but it does make me feel reassured in some way.

People who haven’t read the book keep asking me, “What’s so weirdly reassuring about it?” And I don’t really know how to explain it. In the book, I just try to recreate the experience that I went through, so that, hopefully, when people get to the end of the book they can have gone through the same range of emotions, so that they also feel weirdly reassured.

Manaugh: As far as the human attitude to wildness goes, I think the role of the child is a fascinating subplot. The idea of the wild, feral child is both fascinating and terrifying in popular culture—I’m thinking of Werner Herzog’s newly restored movie about Kasper Hauser, for example, or about recent newspaper articles in the UK expressing fear about "feral children” starting riots in the streets. It seems like humans want to make children as domesticated as possible, as fast as possible, and that, in a sense, the role of education and acculturation is exactly the task of de-wilding human animals.

Mooallem: I don’t know: among certain people in America right now, it seems as though it’s almost going the other way, that there’s a kind of romanticization of kids as a noble, unspoiled embodiment of nature. We haven’t ruined them yet. That sentiment seems to be actually in opposition to this idea that anything that’s animal-like about a kid is not human.

What was interesting to me is that we surround our kids with all these animal images and stuffed lions and bears and so on, yet no one’s ever really looked at how children conceive of wild animals. We have a lot of research about how a kid might think about their family’s pet dog, for instance, but how does that kid think about a panda bear that they’ll never see?


Rufus, the polar bear rocking horse, by Maclaren Nursery.

There was one set of studies done in the 1970s that interviewed a lot of grade school kids about how they thought about wildlife, and the answers were pretty much exactly the opposite of what we like to imagine. The older kids get, the more compassionate they feel toward the wild animals. The younger kids were just horrified and scared and felt very threatened by the animals—which makes perfect sense, of course, because they’re helpless little kids.

In many ways, that’s actually the more “wild” response: the kids are behaving like animals, in the sense that they’re only looking out for their own interests.

I thought that was really funny, in fact, because the whole book came out of a very genuine feeling that it’s really sad that my daughter is going to grow up in a world without polar bears, and, at the same time, a complete inability to understand why that should be so or to rationalize that feeling. After all, she doesn’t interact with polar bears now. Why should she care about polar bears? I think part of that originally inexplicable sense of sadness comes from a romantic place where we want to see children and wild animals as part of the same culture—a culture that’s not us.

Manaugh: What’s interesting, I suppose, with the children, is that we want a kind of animal-like, wild innocence, but only until they reach a certain age.

Mooallem: That actually mirrors this cycle that I write about with a lot of wildlife where we love wild animals when they are helpless and they don’t threaten us, but then we vilify them when they inconvenience us or aren’t under our control.

My daughter is about to turn five, and I’m really glad she doesn’t bite me any more when she gets angry! At the same time, it fills me with a very profound joy when I see her stalking a butterfly on Bernal Hill, because somehow I want her to be connected to that more pure idea of nature. I think that we love wildness and we love that kind of animal nature when it doesn’t inconvenience us—when it’s not biting us in the leg.


California Department of Fish and Wildlife shot three tranquilizer darts into this celebrity mountain lion, found in a Glendale-area backyard, before removing it to Angeles National Forest. Photo: NBC4.

There’s this study in Los Angeles that showed that when there were almost no mountain lions left, people would celebrate them as a part of their natural heritage—the good wild—but then, when mountain lion populations made a bit of a comeback and the lions started intruding into the city and eating pet dogs, people’s attitudes changed and mountain lions were seen as vicious murderers—the bad wild. There is a kind of fickleness: we want it both ways.

In the book, I quote Holly Doremus, who is a brilliant legal scholar based here in Berkeley, who says that we’ve never really decided—or maybe even asked—how much wild nature we need and how much we can accept.

Twilley: What that question brings up to me, too, is the idea of an appropriate context for wildness. One of Rudi Mattoni’s first projects was breeding the Palos Verdes blue butterfly, which was thought to be extinct after its last habitat was covered by a baseball diamond, but was then rediscovered in a field of underground fuel tanks owned by the Department of Defense. I was curious about both the idea of control and the idea of pristine nature, and how both concepts are embedded in our assumptions about wildness.

Mooallem: Right. Pigeons are wild—but they annoy us. Cockroaches are wild. We don’t romanticize or preserve the wild animals that live alongside us and invade spaces that we think of as ours—we exterminate them.

As far as control goes, we want to have our cake and eat it, too. We want something that has nothing to do with us—something that has free rein and that can surprise us and thrill us—but we only want the positive side of that equation. We don’t want the wolves eating our cattle or the sea otters getting in the way of the fishermen. That’s certainly behind some of the extreme lengths we go to in order to create the right context for the animals and to keep them within a certain area that we’ve decided is appropriate for them.

The point of the book is that we’re only going to see more and more examples like the Palos Verde blue and the Lange’s Metalmark, where the last hope for a species is in a seemingly hopeless place. There are only going to be more industrial landscapes—it’s unavoidable. Travis Longcore, who is an urban conservation scientist that I spoke with for the book, makes a really good point, which is that we have to get away from what he calls Biblical thinking—that you’re either in the Garden of Eden or the entire world is fallen. He heads the organization that’s behind a lot of the Antioch Dunes butterfly recovery, and he makes a point of trying to celebrate the wildness of places that make most of us feel queasy.

I think that’s important—I’m not suggesting that we give up on the romantic idea of the places that do seem “pristine,” but I think that we need to be a little more flexible and we need to find the joy and the beauty in those other sorts of places, too.

Twilley: You chose to start the epilogue with a story that seems emblematic: the “species in a bucket” story. What about that story summed up these complex themes you were tackling in the book?

Mooallem: The “species in a bucket” story is about a fish biologist named Phil Pister and a little species of fish called the Owens pupfish. Back in the 1960s, in the Owens Valley, Phil Pister was part of the group who had rediscovered the Owens pupfish—it had been presumed extinct, but he found it living in a desert spring.


Owens Valley pupfish. Photo: UC Davis; Phil Pister in front of the BLM Springs where the fish still flourishes today. Photo: Chris Norment.

One summer—I think it was 1964—there was a drought, and this one desert spring where the fish lived was drying up. Pister ran out there with some of his California Department of Fish & Wildlife buddies, and they moved the fish to a different part of the spring where the water was flowing a little bit better and the fish would have more oxygen.

He sent everyone home thinking it was a job well done, but then, after nightfall, he realized that it wasn’t working. Scores of fish were floating belly up. So he made a snap decision. He got some buckets from his truck, he put all the fish he could into the buckets, he carried them back to his truck, and he drove them across the desert to this other spring where he knew the water was deeper and that they’d survive.

I was drawn to that story because I heard it a few different times and, originally, to be honest, I just didn’t think it was true. It sounded like this almost Biblical, heroic story of a man alone in the desert—and it was always told to me in that way, too. People stressed how miraculous it was and how noble he was, carrying these two buckets full of fish across the desert to save the species. It was almost too perfect of a metaphor—here we are with the fate of all these species in our hands—but it also turned out to be true. I actually went down to Bishop to meet Phil, and he’s a phenomenal guy.

I thought that story should start the epilogue for two reasons. In part, I liked the story for all the same reasons that I thought it wasn’t true—there’s this timelessness to it. A lot of the book is about adding layer after layer of complexity, so the reader feels less and less certainty. It’s not a book that moves toward an answer—it’s more of a book that unravels all the answers that we thought we already knew. So there was something really refreshing and absolving to just take it back to this one man with a bucket, saving a species.

The other reason is that I thought it was a good illustration of this human compulsion to help, which is the underlying driver of so many of the stories in the book. There was something really nice about Phil’s story, in that it didn’t even strike him as that remarkable at the time. Later it did, of course, and he’s written about it, pretty eloquently. But I thought his story got at the fact that we just can’t not do this sort of thing. We can’t not try to solve a problem when it’s in front of us. I found that there’s a real dignity in that.

Even the people I met who were the harshest critics of Endangered Species preservation wanted to help—they just thought the way it was being done was ridiculous or that the politics are ridiculous.


Brooke Pennypacker in costume, with the juvenile whooping cranes. Photo: Operation Migration.


Chairs set up for "craniacs" hoping to witness an Operation Migration flyover, Gilchrist County, Florida. Photo: Jon Mooallem.

Take, for example, all these people up and down Operation Migration’s route who donate their property to let the pilots stay on their land with the whooping cranes. They’re not people that you would think of as environmentalists, but they’re really grateful for this opportunity to help—there’s no red tape, there’s no government surveyor coming in to check their land for endangered species, just a simple way to make a difference for this one species.

I also liked the idea of pairing Phil Pister’s story with Brooke Pennypacker, one of the Operation Migration pilots. For Brooke, this is not a one-night-with-a-bucket deal: he flies a little plane in a bird costume in front of whooping cranes for five months of the year, and then he migrates back with them on land. His whole life is given up to this effort, for the foreseeable future. It’s not a simple problem he’s trying to solve. I found him on a pig farm, where he’d been exiled due to bureaucratic squabbling, and he had FAA inspectors coming to check out his plane. He was just beset by complexity and he was so in touch with the potential futility of it all. He was willing to accept that maybe everything he’s doing isn’t going to make a difference.


Juvenile whooping cranes getting acquainted with the microlight, pre-migration. Photo: Doug Pellerin, via Operation Migration.

That’s the complete opposite of Phil Pister walking across the desert just thinking that all he has to do is move these fish over here and they’ll be fine. In the span of 50 years, we’ve gone from one scenario to the other. But Brooke is doing it because he feels the exact same way Phil did. Brooke told me that he got involved with Operation Migration because it was as if someone had a flat tire on the side of the road and he had a jack in his car. He saw a problem and he knew that he could pull over and help. That’s where it all starts from.

Manaugh: This is a hypothesis in the guise of a question. Most people’s experience of wildlife nowadays is in the form of roadkill or perhaps squirrels nibbling through the phone cable or raccoons in their backyard. It’s very unromantic—whereas pets seem to be getting more and more exotic and strange. There’s a boom in people owning lions or boa constrictors or incredibly rare tropical birds as pets. I’m curious what you think about the role of the pet in terms of our relationship with wild animals, and whether we are turning to increasingly exotic pets in order to replace the wildness we find missing in nature itself.

Mooallem: That’s never occurred to me, but it’s a brilliant point. I’m ashamed to say that I don’t really have a lot to say about pets. I’ve never really had a pet.

My sense is that when you have a dog, the dog is your buddy. Even though it’s a dog, you more or less relate to it as a person. I think that, in that sense, pets are sort of boring to me. But this idea that we’re trying to get our exotic thrills from a pet monkey is interesting. I’ll have to give that some thought.

The stories that interest me as a writer are ones in which people are trying to respond appropriately to something where it’s not clear what the appropriate response is. For a while, I was writing a lot about the dilemma of recycling—you’re holding this can, and you don’t know whether putting it in the recycling bin is smart or whether it just gets shipped off to China. There’s that drive to do the moral thing, but most of us are completely clueless as to what the right thing might be, because of the complexity of the issues.

Wild animals are the perfect example of that kind of situation, because they can’t really tell us what they need—they’re just this black box that our actions get fed into. For some reason, probably some deep Freudian problem, that challenge of trying to do the right thing but ultimately just banging your head against the wall to figure it out is really appealing to me. I really relate to it.

I guess that’s why I’m not really that interested in pets, either. You come to feel that you understand your pet, even if you don’t. There’s not that tension or urge to solve the problem that you get with otters or wolves or buffalo. You house-break your pet and then it’s over.

Manaugh: I wonder, though, if that’s not part of the appeal of getting an exotic animal species as a pet—the promise and the thrill of not understanding it.

Mooallem: At the same time, that’s a feeling that you’ll eventually get bored or annoyed with, and you’ll end up abandoning the pet. I just read that the government is setting up unwanted tortoise drop-offs for owners who want to abandon their pets, just like babies at fire stations. Apparently in some states—Nevada and a few others—there are dozens of desert tortoises being left by their owners by the side of the road.


Desert tortoises at a sanctuary for abandoned pet tortoises in southwest Las Vegas. Photo: Jessica Ebelhar, Las Vegas Review-Journal.

When a pet monkey goes nuts and the owner gives it up, we tend to look at it as a failure of pet ownership, but maybe they actually wanted that feeling of not understanding the animal, at least at first. It’s an interesting theory.

Twilley: Another group of people who would seem to have a very different but equally complex relationship to wild animals is hunters. That’s a whole segment of Americans who seem to be less troubled about what their relationship should be with wild animals, yet who often end up being at the forefront of conservation movements, in order to save the landscapes in which they hunt. The division is interesting—it seems philosophical, but it’s also maybe class-based?

Mooallem: It’s geographic, definitely. But you’re right: a lot of the stereotypes around hunters break down when you see all the really creative conservation projects that are supported, or even spearheaded, by people who we might normally think of as redneck hunters. The lines are just not clearly defined. You also choose your species—some people are more sympathetic to one species than they are to others.

The other point I was trying to make with the book is that conserving a species or celebrating a species is just another way to use the species. Conservationists always talk about utilitarian values and aesthetic values, but, to me, it’s all the same thing. Some of us want salmon in the Columbia River because we want to fish them, and some of us want salmon there because it’s part of America’s natural glory, or because we’ll feel guilty if they go away. But, in all of those reasons, the salmon are serving human needs.

Those different reasons really come to the surface when a species rebounds. Right now, there’s a huge fight up and down the sandhill crane flyway. They were all but extinct, yet they’ve come back to the point where they’re annoying farmers, and hunters are saying: “Fantastic! They’re back—now I can hunt them with my son again. Success!” And, of course, then there’s an outcry from the birdwatchers and the conservationists who are saying that that’s not why we brought them back. We brought them back so they could be beautiful, not so they could be shot. But these are still just two groups of people who want something out of the bird.

Manaugh: There’s another book that came out recently called Nature Wars

Mooallem: Yes, I read that.

Manaugh: The author, Jim Sterba, argues that all of our well-intentioned efforts to protect animals have actually allowed deer and beaver and Canada goose populations to explode, and now they’re bringing down our planes and causing car crashes and tearing up our golf courses and so on. He ends up, to my mind, at least, over-emphasizing the point that we need to become hunters again—that the ecosystem is out of balance precisely because it no longer features human predators.


Roadkilled deer, South Carolina. Photo: John O'Neill.

Mooallem: Preserving these species—whether it’s intentional or whether it’s an unintended consequence of habitat changes, as in the case of deer—is an ecological act, and it’s going to have repercussions that we should take responsibility for dealing with. We forget we’re ecological participants. In fact, if Sterba’s book hadn’t been written, I might be thinking about exactly the same issue now. There are so many cases where it’s the rebound or the resurgence that causes the problem, rather than the decline.

The real fallacy is the “leave no trace” attitude. There is no way you’re not leaving a trace, so it’s better simply to be conscious and thoughtful and to take responsibility for what you’re doing.

Somebody asked me the other day about the de-extinction movement, and I had the same response. I don’t know what I think about actually bringing back passenger pigeons, but I think it’s good that people are talking about being proactive and being creative rather than just trying to pretend we don’t have any power.

Of course, it also makes me nervous—as it should, given our environmental history of unintended consequences, having to find solutions for problems that were caused by our own solutions for other problems that we ourselves most likely caused in the first place.
Looming over and behind the town of Butte, Montana, is the extraordinary sight of an abandoned copper mine called the Berkeley Pit.



Like something from a painting by Caspar David Friedrich, the massively altered, red-stained excavation forms a stepped and sculpted backdrop for the old brick buildings on the hill downtown.

The landscape is made almost uncomfortably spectacular, precisely by this state of post-industrial abandonment, a Gothic ruin in geologic form, where the planet has been forced to reveal its inner structure and grain, the sublime whorls of a continent stripped of their surface covering.



The current managers of the pit, as if in recognition of its Romantic appeal, greet you with a small gift shop selling postcards and trinkets.

Then, after walking through an eerie, steel-lined tunnel that feels as if you might be stepping into an antique submarine, you emerge onto—what else—a panoramic viewing deck. It's a widescreen porch overlooking the toxic vista, complete with interpretive panels and a handrail to lean on in anaesthetic rapture at the brown, rising waters below.



This is both appropriate—the grandeur of the flooded mine is almost impossibly, darkly beautiful—and seemingly an act of spatial sarcasm, as the mine is one of the nation's largest Superfund sites.

Indeed, the Berkeley Pit became briefly infamous in the 1990s when a flock of migrating geese landed on the waters and, as public understanding would have it, died shortly thereafter, possibly in minutes, possibly the very instant they touched the water.

The reality of the story is just as fatal but not nearly as immediate, mirroring the slow-motion menace of the pit's still-rising waters.


"Butte, Montana, Richest Hill on Earth; 100 Years of Underground Mining,” map by Ted Duaime, Patrick J. Kennelly, and Paul Thale of the Montana Bureau of Mines and Geology

During its operation, the mine extracted 1.5 billion tons of material from what was then known as "the richest hill on earth," in the process consuming several communities on Butte's east side. Following its closure in 1982, a new threat emerged: with the pumps in an attached shaft switched off, contaminated groundwater began gradually filling the 1,600-foot deep maw.

Laden with arsenic as well as dissolved copper and zinc, and with a highly acidic pH of 2.5, the pit water is expected to reach the natural water table by 2020—at which point, the rust-brown soup would, theoretically, stop rising. Instead, it will flow out into the surrounding groundwater, poisoning the town it once both consumed and sustained.



A local group called PitWatch, which keeps its eye on the ominous lake, provides the interpretative signage on the viewing platform. They explain that a water-treatment plant has been built in anticipation of this moment, ready to begin treating and diverting pit water as it approaches "Critical Water Level."

"The plant." the boards promise, "is designed to operate forever," siphoning off just enough water to maintain the toxic lake in an uneasy, eternal equilibrium—within sight of disaster, but never, scientists promise, actually reaching it.

The Berkeley Pit from space, courtesy of NASA.

A second claim to fame came to this abyss in Butte when local biochemists Andrea and Don Stierle found that tiny extremophile organisms—that is, organisms that love (-phile) extreme (extremo-) thermal or chemical conditions—thrive in the polluted waters.

Even better, the Stierles found, these extremophiles could potentially help to decontaminate the site—and, by extension, other such heavy metal mines around the world—but also, in the process, lead to the design of new human medicines based on their novel biochemistries. Indeed, New Scientist reported back in 2006, the mine is "a source of novel chemicals that could help fight migraines and cancer."

The idea of extracting new medical treatments from creatures living in a contaminated mine in the foothills of the northern Rockies adds a strange, sci-fi sheen to the otherwise matte, unreflective waters steadily swelling over Butte.



As we drove onward to Missoula along one of the city's many mineralogically-named roads, Iron Street, the looming rock wall of the mine followed us in the rear-view mirror till we got back onto the highway and left this town, nestled underneath its namesake hill's hollowed-out shell, behind.
Mike Elizalde of Spectral Motion applies make-up to actor Ron Perlman, as Hellboy.

Many of today's most original and bizarre visions of alternative worlds and landscapes come from the workshops of Hollywood effects studios. Behind the scenes of nondescript San Fernando Valley offices and warehouse spaces (if not outside California altogether, in the many other nodes of the ever-expanding global network of cinematic effects production, from suburban London to Wellington, New Zealand), lurk the multidisciplinary teams whose job it is to create tomorrow's monsters.

Spectral Motion, the effects house responsible for some of the most technically intricate and physically stunning animatronic creatures seen in feature film today, is no exception. Based in a small strip of anonymous one-story warehouse spaces squeezed in between a freeway and rail tracks, and overshadowed by a gargantuan Home Depot, Spectral Motion has developed monsters, effects, and other mechanical grotesqueries that have since become household nightmares, if not names.

Since its founding, by Mike & Mary Elizalde in 1994, the firm has worked on such films as Hellboy & Hellboy II: The Golden Army, Looper, Attack the Block, Blade 2 & Blade: Trinity, X-Men: First Class, The Watch, and this summer's (from the perspective of at least half of Venue) highly anticipated Pacific Rim.

Venue caught up with Mike Elizalde, CEO of Spectral Motion, on a cloudy day in Glendale to talk all things monstrous and disturbing. Our conversation ranged from the fine line that separates the grotesque and the alien to the possibility of planetary-scale creatures made using tweaked geotextiles, via the price of yak hair and John Carpenter's now-legendary Antarctic thriller, The Thing.



Elizalde, a good-humored conversationalist, not only patiently answered our many questions—with a head cold, no less—but then took us on a tour through Spectral Motion's surprisingly large workshop. We saw miniature zombie heads emerging from latex molds (destined for a film project by Elizalde's own son), costumes being sewn by a technician named Claire Flewin for an upcoming attraction at Disneyland, and a bewildering variety of body parts—heads, torsos, claws, and even a very hairy rubber chest once worn by Vinnie Jones in X-Men: The Last Stand—that were either awaiting, or had already performed, their celluloid magic.



The visit ended with a screening of Spectral Motion's greatest hits, so to speak, with in-house photographer and archivist Kevin McTurk—a chance to see the company's creations in their natural habitat. We walked back out into the flat light and beige parking lots of the Valley, a landscape enlivened by our heightened sense of the combination of close observation and inspired distortion required to transform the everyday into the grotesque.

• • •



Geoff Manaugh: I’d love to start with the most basic question of all: how would you describe Spectral Motion and what the company does?

Mike Elizalde: We are principally a prosthetics, animatronics, and special effects creature studio, but we are also a multifaceted design studio. We do a lot of different kinds of work. Most recently, for example, in partnership with one of my long-time colleagues, Mark Setrakian, we built anthropomorphic bipedal hydraulic robots that engage in battle, for a reality show for Syfy. It’s called RCLRobot Combat League. It’s pretty astounding what these machines can do, including what they can do to each other.

Battling it out in Robot Combat League with two robots—"eight-feet tall, state-of-the-art humanoid robots controlled by human 'robo-jockeys,'" in the words of Syfy—designed by Mark Setrakian of Spectral Motion.

Nicola Twilley: Are the robot battles choreographed, or do you genuinely not know which robot will win?

Elizalde: Oh, no, absolutely—it’s a contest. It really is about which robot will emerge as the victorious contender.

RCL is not only one of our most recent projects, but it also shows that, here at the studio, we can do everything from a very delicate prosthetic application on an actor, to an animatronic character in a film, to something that’s completely out of our comfort zone—like building battling robots.

I always tell people that, if they come in here with a drawing of a car, we could build that car. It is a very diverse group that we work with: artists, technicians, and, of course, we use all the available or cutting-edge technologies out there in the world to realize whatever it is that we are required to make.



Manaugh: What kind of design briefs come to you? Also, when a client comes to you, typically how detailed or amorphous is their request?

Elizalde: Sometimes it is very vague. But, typically, what happens is we’re approached with a script for a project. Our job is to go through the script and create a breakdown and, ultimately, a budget based on those breakdowns. We take whatever we think we should build for that script and we make suggestions as to how each thing should look—what should move, what the design should be, and so on.

Other times, we’ll be working with a director who’s very involved and who maybe even has some technical knowledge of what we do—especially someone like Guillermo del Toro. He’s completely savvy about what we do because he used to own a creature shop of his own, so working with someone like him is much more collaborative; he comes to us with a much more clear idea of what he wants to see in his films. Lots of times, he’ll even show us an illustration he’s done. He’s the first one to say, “I'm not an artist!” But he really is. He’s quite gifted.


The creature known as Wink from Hellboy II: The Golden Army, designed by Spectral Motion, including a shot of the mechanical understructure used inside Wink's left hand.

So he’ll bring us his illustrations and say, you know, “You tell me if it’s going to be a puppet, an animatronic puppet, or a creature suit that an actor can wear.” And that’s where our knowhow comes in. That’s how it evolves.

There are also times—with the robot show, for example—where they know exactly what they need but they don’t know how to achieve it. In those cases, they come to us to do that for them.

Twilley: Can you talk us through one of the projects you’ve worked on where you had to create your vision based solely on what’s in the script, rather than more collaborative work with the director? What’s that process like?

Elizalde: Well, I’d actually say that ninety percent of our work is that way. For most of the projects we work on, we do, in fact, just get a script and the director says, “Show me what this looks like.” But we love that challenge. It’s really fun for us to get into the artistic side of developing what the appearance of something will end up looking like.

We had a lot of fun working with a director named Tommy Wirkola, for example, who directed Hansel & Gretel: Witch Hunters. He was the director of Dead Snow, a really strange Norwegian film that involved this group of young kids who go off to a cabin where they’re hunted down by a hoard of horrifying zombie Nazi monsters. It’s really grisly.

Anyway, although Tommy did have really good ideas about what he wanted his characters to look like for Hansel & Gretel, there were certain characters whose descriptions were much more vague—also because there was such a broad scope of characters in the film. So they did rely on us to come up with a lot of different looks based on loose descriptions. In the end, the principal characters in the film were total collaborations between Tommy, myself, and Kevin Messick, the producer, and the rest of my team here at Spectral Motion, of course.

I’d say that’s a good example of both worlds, where you have some clear ideas about a few characters, but, for another group of characters, there really isn’t a whole lot of information or a detailed description. You have to fill in a lot of blanks.

Mark Setrakian, Thom Floutz , and Mike Elizalde of Spectral Motion pose with Sammael from Hellboy.

Twilley: What kinds of things do you look for in a script to give you a clue about how a character might work—or is that something that simply comes out when you’re sketching or modeling?

Elizalde: In a script, we basically know what we’re looking for: “Enter a monster.” We know that’s what we’re going be doing, so we look for those moments in the script. Sometimes there’s a brief description—something like, “the monster’s leathery hide covered in tentacles.” That kind of stuff gives us an immediate visual as to what we want to create. Then we explore it with both two-dimensional artwork and three-dimensional artwork, and both digital and physical.

In fact [gestures at desk], these are some examples of two-dimensional artwork that we’ve created to show what a character will look like. This [points to statuette above desk] is a maquette for one of the characters in Hellboy II—the Angel of Death. This was realized at this scale so that del Toro could see it and say, “That’s it. That’s what I want. Build that.” This actually began as an illustration that Guillermo did in his sketchbook, a very meticulous and beautiful illustration that he came to us with.

The Angel of Death from Hellboy II: The Golden Army.

But that’s the process: illustration and then maquette. Sometimes, though, we’ll do a 3D illustration in the computer before we go to the next stage, just to be able to look at something virtually, in three dimensions, and to examine it a little bit more before we invest the energy into creating a full-blown maquette.

The maquette, as a tool, can be very essential for us, because it allows us to work out any bugs that might be happening on a larger scale, design-wise. Practically speaking, it doesn’t give us a lot of information as to how the wings are going to work, or how it’s going to function; but it does tell us that a human being could actually be inside of it and that it could actually work as a full-scale creature. It’s essential for those reasons.

Simon, the mechanical bird from Your Highness, before paint has been applied, revealing the internal workings.

Because you can show a director a drawing, and it might look really terrific—but, when it comes to actually making it, in a practical application at scale, sometimes the drawing just doesn’t translate. Sometimes you need the maquette to help describe what the finished piece will look like.

Manaugh: You mentioned animatronics and puppeteering. We were just up at the Jet Propulsion Lab in Pasadena yesterday afternoon, talking to them about how they program certain amounts of autonomy into their instruments, especially if it’s something that they’re putting on Mars. It has to be able to act on its own, at times, because it doesn’t have enough time to wait for the command signal from us back on Earth. I’m curious, especially with something like the robot combat show, how much autonomy you can build into a piece. Can you create something that you just switch on and let go, so that it functions as a kind of autonomous or even artificially intelligent film prop?

Elizalde: It really depends on the application. For example, when we’re filming something, a lot of times there’s a spontaneity that’s required. Sometimes actors like to ad lib a little bit. If we need to react to something that an actor is saying via a puppet—an animatronic puppet—then that live performance really is required. But we always have the option of going to a programmable setup, one where we can have a specific set of parameters, performance-wise, to create a specific scene.

For live performances on a stage, we’d probably want to program that with the ability to switch over to manual, if required. But, if it’s scripted—if it’s a beat-by-beat performance—then we know that can be programmable. We can turn on the switch and let it go. In the middle of that, you can then stop it, and have a live show, with puppeteers in the background filling in the blanks of whatever that performance is, and then you can continue with the recorded or programmed performance.

It really goes back and forth, depending on what it is the people who are putting on the production need.

The mechanical skull under structure of the Ivan the Corpse from Hellboy.

Twilley: That’s an interesting point—the idea of how a live actor responds to your creatures. Have there been any surprises in how an actor has responded, or do they all tend to know what they’re getting into by the time you’re filming?

Elizalde: They do know what they’re getting into, but it’s always rewarding to have an actor go over to the thing that you built, and stare at it, and say, “Oh, my God! Look at that thing!” They can feed off of that. I think they are able to create a more layered performance, with a lot more depth in their reactions to something if it’s actually there—if it’s present, if it has life to it, and it’s tactile.

A lot of times people turn to digital solutions. That’s also good, if the application is correct. But, you know, a lot of directors that we talk to are of the mind that a practical effect is far better for exactly that reason—because the actor does have a co-actor to work with, to play off of, and to have feelings about.

That’s one of the things that keeps us going. And, the fact is, with this business, no matter what walks through that door we know that it’s going to be a completely different set of challenges from the last thing that we did.

Mechanical puppet of Drake from a Sprite commercial. Scott Millenbaugh and Jurgen Heimann of Spectral Motion are seen here making mechanical adjustments.

Manaugh: About six years ago, I interviewed a guy who did concept art for the Star Wars prequels, and he had a kind of pet obsession with building upside-down skyscrapers—that is, skyscrapers that grew downwards like stalactites. He kept trying to get them into a movie. He would build all of these amazing 3D models and show them to the director, and the director was always excited—but then he’d turn the model upside-down and say, “Let’s do it like this!” So all the upside-down skyscrapers would just be right-side up again. In any case, this artist was then working on the recent Star Trek reboot, and there’s a brief moment where you see upside-down skyscrapers on the planet Vulcan. It's only on screen for about a second and a half, but he finally did it—he got his upside-down skyscrapers into a film.

Elizalde: [laughs] But, ohhh! For half-a-second! [laughter]

Manaugh: Exactly. Anyway, in the context of what you do here at Spectral Motion, I’m curious if there is something like that, that you’ve been trying to get into a movie for the last few years but that just never quite makes it. A specific monster, or a new material, or even a particular way of moving, that keeps getting rejected.

Elizalde: That’s an interesting question. [pauses] You know, I’d have to say no. I’d say it seems like the more freely we think, the better the result is. So it’s quite the contrary: most of the stuff we suggest actually does make it into the film, because it’s something that someone else didn’t think about. Or perhaps we’ve added some movement to a character, or we’ve brought something that will elicit a more visceral reaction from the audience—bubbly skin, for instance, or cilia that wiggle around.

I don't think I’ve really encountered a situation where I thought something would look great, but, when I brought it to a director, they said, “Nah—I don’t think that’s going to go. Let's not try that.” They always seem to say, “Let’s try it! It sounds cool!”

Mike Elizalde applies some last-minute touch-ups to actor Ron Perlman on the set of Hellboy.

We really haven’t had a whole lot of frustration—maybe only when it turns into a very large committee making a decision on the film. Then, I suppose, a certain degree of frustration is more typical. But that happens in every industry, not just ours: the more people are involved in deciding something, the more difficult it is to get a clear image of what it is we’re supposed to do.

Manaugh: When we first spoke to set-up this interview, I mentioned that we’d be touring the landfill over at Puente Hills this morning, on our way here to meet you—it’s the biggest active landfill in the United States. What’s interesting is that it’s not only absolutely massive, it’s also semi-robotic, in the sense that the entire facility—the entire landscape—is a kind of mechanical device made from methane vents and sensors and geotextiles, and it grows everyday by what they call a “cell.” A “cell” is one square-acre, compacted twenty feet deep with trash. Everyday!

But I mention this because, during our visit there, I almost had the feeling of standing on top of a mountain-sized creature designed by Spectral Motion—a strange, half-living, half-mechanical monstrosity in the heart of the city, growing new “cells” every day of its existence. It’s like something out of Hellboy II. So I’m curious about the possibilities of a kind of landscape-scale creature—how big these things can get before you need to rely on CGI. Is it possible to go up to that scale, or what are the technical or budgetary limitations?



Elizalde: We can’t build mountains yet but, absolutely, we can go way up in scale! Many times, of course, we have to rely, at least to some degree, on digital effects—but that just makes our job easier, by extending what is possible, practically, and completing it cinematically, on screen, at a much larger scale.

For example, on Pacific Rim, Guillermo del Toro’s new film that comes out this summer, we designed what are called Jaegers. They’re basically just giant robots. And we also designed the Kaiju, the monsters in the film. First, we created maquettes, just like the ones here, and we made several versions of each to reflect the final designs you’ll see in the film. Those were taken and re-created digitally so they could be realized at a much larger scale.

To that degree, we can create something enormous. There’s a maquette around here somewhere of a character we designed for the first Hellboy movie—actually, there are two of them. One of those characters is massive—about the size of a ten-story building—and the other one is much, much bigger. It’s the size of… I don't know, a small asteroid. There really is no limit to the scale, provided we can rely on a visual effects company to help us realize our ultimate goal.

The animatronic jaws and bioluminescent teeth (top) of the alien creature (bottom) designed by Spectral Motion for Attack the Block.

But going the opposite direction, scale-wise, is also something that interests us. We can make something incredibly tiny, depending on what the film requires. There is no limit in one direction or the other as to what can be achieved, especially with the power of extension through digital effects.

Manaugh: Just to continue, briefly, with the Puente Hills reference, something that we’ve been interested in for the past few years is the design of geotextiles, where companies like TenCate in the Netherlands are producing what are, effectively, landscape-scale blankets made from high-quality mesh, used to stabilize levees or to add support to the sides of landfills. But some of these geotextiles are even now getting electromagnetic sensors embedded in them, and there’s even the possibility of a geotextile someday being given mechanical motion—so it’s just fascinating, I think, to imagine what you guys could do with a kind of monstrous or demonic geotextile, as if the surface of the earth could rise up as a monster in Hellboy III.

Elizalde: [laughs] Well, now that I know about it, I’ll start looking into it!




Twilley: Aside from scale, we’re also curious about the nature of monsters in general. This is a pretty huge question, but what is a monster? What makes something monstrous or grotesque? There seems to be such a fine line between something that is alien—and thus frightening—and something that is so alienating it’s basically unrecognizable, and thus not threatening at all.

Elizalde: Exactly. Right, right.

Twilley: So how do you find that sweet spot—and, also, how has that sweet spot changed over time, at least since you’ve been in the business? Are new things becoming monstrous?

Elizalde: Well, I think my definition of a monster is simply a distortion: something that maybe looks close to a human being, for example, but there’s something wrong. It can be something slight, something subtle—like an eye that’s just slightly out of place—that makes a monster. Even a little, disturbing thing like that can frighten you.

So it doesn’t take a lot to push things to the limit of what I would consider the grotesque or the monstrous. At that point, it runs the gamut from the most bizarre and unimaginable things that you might read in an H. P. Lovecraft story to something simple, like a tarantula with a human head. Now there’s something to make me scream! I think there’s a very broad range. But you’re right: it’s a huge question.

Mark Setrakian of Spectral Motion working on the animatronic head of Edward the Troll from Hansel and Gretel: Witch Hunters.

And sometimes the monstrous defies definition. I guess it’s more of a primal reaction—something you can’t quite put your finger on or describe, but something that makes you feel uneasy. It makes you feel uncomfortable or frightened. A distortion of what is natural, or what you perceive as natural, something outside what you think is the order of things—or outside what you think is acceptable within what we’ve come to recognize as natural things—then that’s a monster. That’s a monstrous thing.

Do you recall seeing John Carpenter’s The Thing?

Manaugh: It's one of my favorite movies.

Elizalde: My goodness, the stuff in that film is the stuff of nightmares. It really is brilliantly executed, and it’s a great inspiration to all of the people in our industry who love monsters, and to all the fans all over the world who love monstrous things.

Actor Ron Perlman gets make-up applied for his role as Hellboy, as director Guillermo del Toro and Mike Elizalde from Spectral Motion stop in for a visit.

Twilley: Have there been trends over time? In other words, do you find directors look for a particular kind of monster at a particular moment in time?

Elizalde: I do think there are trends—although I think it’s mainly that there’s a tendency here in Hollywood where somebody hears a rumor that someone down the street is building a film around this particular creature, so that guy’s now got to write a similar script to compete. But sometimes the trends are set by something groundbreaking, like The Thing. Once that movie was released, everybody paid attention and a whole new area of exploration became available to create amazing moments in cinema.

Those are the real trends, you know. It’s a symbiosis that happens between the artistic community and the technological community, and it’s how it keeps advancing. It’s how it keeps growing. And it keeps us excited about what we do. We feed off of each other.

Technician Claire Flewin uses her hand to demonstrate how yak hair looks stretched over a mold.

Manaugh: Speaking of that symbiosis, every once in a while, you’ll see articles in a magazine like New Scientist or you’ll read a press release coming out of a school like Harvard, saying that they’ve developed, for instance, little soft robots or other transformable, remote-control creatures for post-disaster reconnaissance—things like that. I mention this because I could imagine that you might have multiple reactions to something like that: one reaction might be excitement—excitement to discover a new material or a new technique that you could bring into a film someday—but the other reaction might be something almost more like, “Huh. We did that ten years ago.” I’m curious as to whether you feel, because of the nature of the movies that you work on, that the technical innovations you come up with don’t get the attention or professional recognition that they deserve.

Elizalde: I think your assessment is accurate on both counts. There are times when we see an innovation, or a scientific development, that we think could be beneficial to our industry; in fact, that happens all the time. There’s cross-pollination like that going on constantly, where we borrow from other industries. We borrow from the medical industry. We borrow from the aerospace industry. We borrow, really, from whatever scientific developments there are out there. We seek them out and we do employ some of those methods in our own routines and systems.

In fact, one of our main designers, and a very dear friend of mine whom I’ve worked side by side with for years now, is Mark Setrakian. When he’s not working here with us, he is a designer at one of the labs you just described.

So there is a lot of crossover there.

The mechanical skull of the scrunt from Lady in the Water.

Manaugh: That’s interesting—do the people who work for you tend to come from scientific or engineering backgrounds, like Mark, or are they more often from arts schools? What kinds of backgrounds do they tend to have?

Elizalde: Generally speaking, I think they’re people like myself who just have a love for monsters. That’s honestly where a lot of people in our industry come from. There are people who started their careers as dental technicians and people who started out as mold-makers in a foundry. In all of those cases, people from those sorts of technical fields gravitate toward this work because of, first of all, a love for monsters and creatures, and, secondly, a technical ability that isn’t necessarily described as an art form per se. Electronics people love to work for us. People who design algorithms love to work for us. Even people with a background in dentistry, like I say, love to work for us.

There’s really no limit to the fields that bring people to this industry—they come from everywhere. The common thread is that we all love movies and we all love creatures. We love making rubber monsters for a living.

The shelves at Spectral Motion gives a good sense of the workshop's range of reference. Highlights include the Third Edition of the Atlas of Clinical Dermatology (in color), The National Audubon Society: Speaking for Nature, Marvel's Fantastic Four, The Graphic Works of Odilon Redon, and a Treasury of Fantastic and Mythological Creatures.

To go back to your previous question, there are definitely times when I think we don’t get a lot of exposure for what we do, but there is also, at some level, a kind of “don’t pay attention to the man behind the curtain” thing going on, where we don’t really want people to look backstage at what makes a movie work. We are creating a living creature for film, and that’s what we want to put across to the audience. In some ways, it’s actually better if there isn’t too much exposure as to how something was created; it’s like exposing a magic trick. Once you know the secret, it’s not that big a deal.

So we do live in a little bit of a shroud of secrecy—but that’s okay. After a film is released, it’s not unusual for more of what we did on that film to be exposed. Then, we do like to have our technicians, our artists, and what we’ve developed internally here to be recognized and shown to the public, just so that people can see how cool it all is.

I think, though, that my response to those kinds of news stories is really more of a happiness to see new technologies being developed elsewhere, and an eagerness to get my hands on it so I can see what we could do with it in a movie. And, of course, sometimes we develop our very own things here that maybe someone hadn’t thought of, and that could be of use in other fields, like robotics. And that’s kind of cool, too.

Mike Elizalde sculpting an old age Nosferatu as a personal project.

Manaugh: Finally, to bring things full circle, we’re just curious as to how Spectral Motion got started.

Elizalde: Well, I became involved in the effects industry back in 1987. It sort of just dawned on me one day that I wanted to do this for a living. I had been in the Navy for eight years when it really started getting to me—when I realized I wasn’t doing what I wanted to do with my life.

I decided that I’d come back to my home, which is Los Angeles, California, and look into becoming a creature effects guy. I was totally enamored of Frankenstein’s Monster when I was a kid. I grew up watching all the horror movies that I could see—a steady diet of Godzilla, Frankenstein, you name it. All the Universal monsters, and even more modern things like An American Werewolf in London. They just really fascinated me. That was a real catalyst for me to start exploring how to do this myself.

I also learned from books. I collected books and started using my friends as guinea pigs, creating very rudimentary makeup effects on them. And, eventually, I landed my first job in Hollywood.

Cut to fifteen years later, and I had my first experience on set with Guillermo del Toro. I was working with him on Blade II. I had done an animatronic device for the characters he was using in his film, and I was also on set puppeteering. We became very good friends. That’s when he offered me the script for Hellboy and that’s how we started Spectral Motion. I became independent. Prior to that I had worked for Rick Baker, and Stan Winston, and all the other big names in town. But this was our opportunity to make our own names—and here we are, today.

You know, this is one of those industries where you can come in with a desire and some ability, and people around you will instruct you and nurture you. That’s how it happened for me. I was taught by my peers. And it really is a great way to learn. There are schools where you can learn this stuff, as well, but my experience proved to me that the self-taught/mentored method is a very good way to go.

Kazakhstan Elite, Jessica Rath, high-­fire glazed porcelain, 2012; photograph courtesy Jessica Rath.

Every apple for sale at your local supermarket is a clone. Every single Golden Delicious, for example, contains the exact same genetic material; though the original Golden Delicious tree (discovered in 1905, on a hillside in Clay County, West Virginia) is now gone, its DNA has become all but immortal, grafted onto an orchard of clones growing on five continents and producing more than two hundred billion pounds of fruit each year in the United States alone.

Embedded within this army of clones, however, is the potential for endless apple diversity. Each seed in an apple is genetically unique: like human siblings, seed sisters from the same fruit remix their source DNA into something that has never been seen before—and is likely, at least in the case of the apple, to be bitter, tough, and altogether unpalatable. The sheer variety of wild apples is astonishing: in its original home, near Almaty in Kazakhstan, the apple can be the size of a cherry or a grapefruit; it can be mushy or so hard it will chip teeth; it can be purple- or pink-fleshed with green, orange, or white skin; and it can be sickly sweet, battery-acid sour, or taste like a banana.


Tasting apples at the Plant Genetic Resources Unit; photograph by Jessica Rath from her 2009 visit.

In Geneva, New York, these two extremes—the domesticated apple's endless monoculture and its wild diversity—can be found side-by-side. As part of the national germplasm system, America's apple archivist, Philip Forsline, has assembled and tended a vast Noah's Ark of more than 2,500 apple varieties: two clones of each, in order to preserve the fruit's genetic biodiversity. Meanwhile, on the same Cornell/USDA Agricultural Experiment Station, Susan Brown, one of the country's three commercial apple breeders, develops new clones by cultivating wildly different seed sisters.

In 2009 and 2011, artist Jessica Rath visited both the Apple Collection at the USDA’s Plant Genetic Resources Unit and the Cornell apple-breeding program, creating a body of new work, currently on display at the Pasadena Museum of California Art under the title take me to the apple breeder.

Rath's original goal was to create slip cast porcelain sculptures that embodied the incredible—and now endangered—range of the apple's aesthetic potential; revealing the charms and qualities it has developed through co-evolution with humans as a reflection of our own desires and will. During her visit, however, Rath also became fascinated by the conjoined twin of Forsline's apple archive: Brown's speculative sisters and successful, selected clones, which she photographed as bare-branched trees against a white backdrop.

Intrigued by the idea of artwork that reflects on the complicated threads of selection and preservation that bind humans and apples together, Venue toured the exhibition with Rath. The edited transcript of our conversation, which ranges from the trickiness of Vegas Red glaze to the future of apple breeding, appears below.

• • •


PI 588933.12 (unnamed cluster); photographed on the tree by Jessica Rath during her 2009 visit.

Nicola Twilley: How did you come to visit the Apple Collection at the USDA’s Plant Genetic Resources Unit in upstate New York?

Jessica Rath: I read about it in Michael Pollan’s The Botany of Desire. The first chapter is about apples, and he visits the orchard in Geneva. I read that section and I knew I needed to make work about it. I don’t do that very often but that passage, where he writes about the variety of the apples and the way they look and taste… I wanted to make something as intriguing as that—I wanted to get you to feel that crazy diversity. I sat on that for years. I wanted to go there, but I had no idea how I was going to make work about it.


Sunset cluster, Jessica Rath, high-­fire glazed porcelain and bronze, 2012; photograph courtesy Jessica Rath.

I just bookmarked it, and then my apricot tree died. I made a peel—an inverted mold, I guess—of this dying tree, and I made a slip cast of its one, last fruit. I’ve changed mediums constantly in my practice—I usually do site-specific installations or I do performance work—but I talked to some sculptor friends to find out how to create a sort of glowing, golden aura for this last apricot, and they all said slip cast porcelain. So I made it, and I looked at it and, and I thought, that’s not it. That’s not good enough. But it did glow. And that’s what made me think I was ready to do something with the apples. I thought, if I can make them glow, then I can make this work. So that’s when I raised some money on Kickstarter to be able to get there.

That was the other piece of the puzzle that fell into place. My daughter was a baby and I hadn’t read anything in months, but I was on a flight and I picked up The New York Times, and there was an article about Kickstarter. I went home, I raised money on Kickstarter, and I got it about a month before the end of apple season; so I raced over to the Plant Genetic Resources Unit for a forty-eight hour visit.


Scouting for apples at the Plant Genetic Resources Unit; photograph by Jessica Rath from her 2009 visit.

I learned a lot while just scouting on the first day, from a man named William Srmack who manages the orchards and works directly with Philip Forsline, who’s the curator of the collection. On the second day, I just collected apples. I brought home several hundred apples. Part of the Kickstarter money bought an extra refrigerator for the studio and I loaded it and kept it pretty cold. I took a lot of photos of the fruit on the tree, and in a light box, too.


PI 483254.22 (unnamed—sunset cluster); photographed on the tree by Jessica Rath during her 2009 visit.

Twilley: Let’s look at the sculptures. If I understand correctly, although each pair or cluster represents a different breed, they’re not casts of specific, particular apples, but rather abstracted, ideal forms—or ur-apples—that embody the breed’s characteristic shape and color.

Rath: Exactly. With slip cast porcelain, you lose thirty percent of the volume when you fire. So, even if you wanted to do a cast of the original apple, you couldn’t get the same scale because it would be shrunk by thirty percent, which not only makes it too small, it also miniaturizes the features. It makes it kind of a caricature. It isn’t just small, it’s cartoonish. So it doesn’t work.

I already knew I had to make an object thirty percent larger in order to get the scale right. But the other thing is that I didn’t want to make something descriptive. I wanted to make something that communicated something about the wild diversity of these apples and the ways that they embody different facets of our desires through the science fiction of breeding—the thing Michael Pollan is writing about.

When you describe things accurately in a botanical drawing sort of way, it dies. When artwork is too illustrative, it can only describe and it can’t go any further than that. You recognize it and then you stop being interested. You’re amazed at the replication, you’re amazed at the representation, but then you actually can’t think about it as anything other than its finite definition.


A Yellow Bellflower photographed on the tree by Jessica Rath during her 2009 visit. The Yellow Bellflower is thought to have originated in Burlington, New Jersey, and is still grown as an heirloom variety today. It is described as a "large, handsome, winter apple" that is equally delicious when used for cidering, baking, or eating out of hand.

For my sculptures, the shapes are very similar to the original. They’re just pushed a little, so that the things about them—the sculptural elements about them, their particular volume or tilt, or how fat and breast-like they are—are composed three-dimensionally in such a way that you notice them a bit more, and they pop a little. They’re not on a tree. They’re not something that’s dangling that you want to pick because you want to eat it; so, instead, I have to make them attractive through a very different model—an art historical model. I’ve got to present them like they’re a still-life, and compose them in that framework, so that you can be intrigued by them again the way you would be if you saw them as a fruit on a tree.


Yellow Bellflower, Jessica Rath, high-fire glazed porcelain, 2012. Rath explained that she focused on the Bellflower's "fantastic curves and lilts. It was very muscular—even beefy—to the point where it felt almost as though it shouldn't be called an apple, but rather some other fruit instead."

Geoff Manaugh: In the exhibition brochure, it says it took two years of experimentation to arrive at these glazes. Can you talk a bit more about that chemical process?

Rath: In ceramics, there are low-fire glazes, which are very descriptive. They stay the same color. Then the high-fire glazes have more of a glow to them. They also just have a lot of materials in them, and are a lot more unpredictable. You’ve probably seen it at pottery stalls at the fair: when you look at all the mugs or plates or whatever that have all been dunked in one kind of cerulean blue, they will all have turned out slightly different. Some of them will be light blue or whiter or purplish, depending on where they were in the kiln and how thick the glaze was on it and how it dripped.

I originally did that apricot, that last fruit, in a low-fire glaze. But for the apples, I steered away from being that descriptive with the glazes because they died for me, except for ones in which I would layer quite a few low-fire glazes. There’s this fuzzy speckling you can get in low-fire, which I wanted.

Normally, you would make little rectangular tiles of clay and you’d fire it and you’d have fifty little things to test the glaze on, till you got roughly what you want. But these apples are round and irregular rather than flat, and the glaze moves on them in very particular ways depending on the size and the angles of their curves, so I couldn’t test on strips. I had to test on the object.


Deacon Jones, Jessica Rath, high-fire glazed porcelain, 2012. The Deacon Jones is the largest apple in Rath's inventory, at a magnificent and somewhat incredible seven inches tall

This one [shown above], the Deacon Jones, probably took one hundred tests. This was the hardest one, even though it’s the straightest glaze. All of the others are tweaked a little, but the glaze on this is pretty straight. It’s called Vegas Red and it does get this red but usually only in parts or pieces, say, at the bottom of the bowl. It doesn’t stay a solid red. And it also drips. So to get it to actually sit there and get this red all over is one out of one hundred, if you’re lucky.

It’s also down to a very, very close relationship with the ceramic technician that took about two years to build, so that after two years of watching me fail over and over again, he put it in a sweet spot in the kiln. He’s Japanese, and he’s pretty old-school, and I think he thought I had finally worked hard enough that I deserved a sweet spot. There’s only one or two of them in the kiln. All of a sudden I got three perfectly red apples in a month. I knew I was improving over time, but it was that relationship, too.


PI 588933.12 (Unnamed cluster), Jessica Rath, high-fire glazed porcelain and bronze, 2012.

This is an unnamed apple [shown above], which is based on trees in the orchard that were grafted from wild apples in Kazakhstan, from the original home of the apple. It’s low-fire over high-fire. I was interested in this sort of speckling blush that they had, but then the blush took over. My approach was to get to a point with the experimentation where I found something that grabbed me and then let it go with that and work with that.

Twilley: That sounds a little like the apple breeding process.

Rath: Yes—I found a quality I liked and then I bred and bred to refine it, essentially. This is a Dulcina, which is another one with a blush that I arrived at while I was trying to get the rest of it into a more green or yellowish stage. I loved the metaphor of the night sky that’s held in it, so I just went for that.


Dulcina, Jessica Rath, high-fire glazed porcelain, 2012.

There’s supposed to be an edition of two of each of these apples, and I’m unable to replicate this one. It’s the last one. I’m still working on it. After you leave, I’ll go up to the kiln again. The idea of producing an edition of two is an odd one in sculpture, but it made sense for the apples: they’re always planted in pairs in the orchard, as a Noah’s Ark idea—in case something happens to one.


Whiteness, Jessica Rath, high-fire glazed porcelain, 2012.

These final ones [shown above] are very, very pale yellow on the tree and when the sun hits them they turn white. You know that they’re yellow, but when you’re in this orchard, things look different. I’ve described it to people as being like when you go fishing, and when you catch a fish, it has a certain glimmer to the skin while it’s alive. As soon as you kill it, as soon as it’s dead, the whole sheen shifts into a kind of grey. The depth of the color is not the same. It’s immediate.


PI 594107.j5 (unnnamed—whiteness), photographed on the tree by Jessica Rath during her 2009 visit.

I swear that these apples have the same thing. There’s something about them when they’re on the tree—they have this luminosity. As soon as you pick them, the depth of the color isn’t there, and the whiteness is just a pale yellow. You can’t capture it in a photograph, either. That’s why I chose ceramics. I’ve no business doing any ceramics. I’ve never done it before. I’m a sculptor, but sculptors and ceramicists are usually in separate departments. But when I saw what the glazes could do, I thought that I could catch that life again.

Porcelain vitrifies—it turns to glass with the glaze—which means that the body of the sculpture and the color that’s applied, this glaze, become one body. That’s a technical thing, but it’s also real and aesthetic. In sculpture, that doesn’t happen. You can use car body paint to make something glow and shift in the light, but it’s always applied, and in ceramics the color and the body become one. I had a whole series of fifteen years of work where I never used color because I always thought, what’s the point? It’s not part of the body of the work; it’s just applied.

Twilley: Did you take the tree photographs in the show at the same time, or is that a separate project?

Rath: While I was at the Plant Genetics Resource Unit, I got a call from this woman, Susan Brown. I don’t even know how she got hold of me, but thank god she did. She said, “You need to come over here, because I’ve got these trees and you need to see them.” It turns out she’s one of only three commercial apple breeders in the United States, and her job is to cross apple varieties to improve them and create the next Jonagold.


Dr. Susan K. Brown and Jessica Rath during the tree photo shoot, March 2011; photography courtesy Jessica Rath.

And I said, “I’m really busy. I’ve got 48 hours. I’m really into these apples.” And she just said, “Get the rest of your apples and come over here. We’ve got three hours before the sun sets.”

I don’t know why I said yes. I was just very lucky. She picked me up in her truck and she showed me a row of cloned trees. It was October, so all of the leaves were still on the trees, and she hadn’t pruned them, because she wants to see what the architecture will do if it’s not touched. It was just this big row of green, and I couldn’t really see anything.


Sisters small and different, Jessica Rath, archival pigment print on exhibition fiber, 2012.

So then she took me to another row of trees that were just saplings. They had some leaves, but not many, because they were so young. Every single one of them had a different architecture—some of them were weeping, some were standing upright, some of them had branches like corkscrew or at perfect right angles. It was like a carnival. They were just different bodies, different leaves, and different sheens to the leaf. She said, “This is what happens when you cross.” Then I got it.

She took me back to her office and showed me a big binder—she had been photographing her trees for years. She understood her trees as artwork, and she wanted somebody else to have a conversation with about that.


Sisters normal, Jessica Rath, archival pigment print on exhibition fiber, 2012.


Sisters weeping, Jessica Rath, archival pigment print on exhibition fiber, 2012.

She had tried to stretch these sheets behind trees in the winter, and I thought—that’s it! I need to do that, but I need to do it really, really well. So I applied for a grant to go back and photograph Susan’s trees in winter.

I came back about a year and a half later. Susan and I spent a day scouting, then we shot for three days. I was trying to not only show the architecture and the diversity, but also what I wanted in terms of understanding her work, and the difference between the sisters and the clones. The sisters had this extreme variety, but when I went back, I fell in love with the clones. They were all covered in leaves before; I couldn’t really see them. But when I went back in winter, they seemed to not embody the diversity but rather, instead, embody this kind of limiting figure, this figure that had been worked on, that had been “improved” by humans, and that was beautiful but also really haunting.


Clone with central leader, Jessica Rath, archival pigment print on exhibition fiber, 2012.

Some of them are bred for their architecture, but lots of them are bred for other qualities—resistance to browning or disease, high yield, or taste—and are kept alive despite their architecture. Susan told me that they’re on the cusp of moving to quite a different way of breeding, using genetic markers, so, in the future, she probably won’t have rows and rows of such extreme variety. She’ll have more control.


Clone spreading with scab resistance, Jessica Rath, archival pigment print on exhibition fiber, 2012.

That idea of artificial selection versus natural selection, and the way that certain varieties become weaker, but yet more common, because they’ve entangled humans into maintaining them—that was something I was thinking about before I went to graduate school. I was working with flora in general, but I couldn’t figure out a way to get plants to talk, and so I gave up and moved on. Then, when I read The Botany of Desire, after fifteen years of staying away from the topic, it was as if Pollan had given me a voice for them—an imaginary voice in which they’re drawing us in through aesthetics and through taste in order to get us to reproduce them. Finally, I felt as though I could have a discussion with plants—that they had agency.


Sisters smiling, Jessica Rath, archival pigment print on exhibition fiber, 2012.


Clone with perseverance, Jessica Rath, archival pigment print on exhibition fiber, 2012.

Manaugh: It’s interesting that the sisters are all shown in group portraits, whereas the clones are shot on their own, as individuals. Was that a conscious decision, and, if so, what was the intention behind it?

Rath: It was interesting—I tried to shoot the clones as a group, but they just became a landscape. It just seemed that the way to show the clones was as an adult, as something that you would pull material from that had lived a life already, that was full of its own, carefully constructed shape already, and that had certain defined characteristics. I wanted it to capture the potential of using it for these breeding experiments. Meanwhile, the sisters are all about the variety.


From left to right, Cole Slutsky, Mary Wingfield, Timothy Zwicky, and Dustin McKibben set up the 20 x 30 ft backdrop for the photograph Water Sprout; photograph courtesy Jessica Rath.


Backdrop set up for Clone with central leader; photograph courtesy Jessica Rath.

The set up was tortuous. I was using a twenty-by-thirty-foot muslin backdrop. There were five people holding it down, the wind was gusting—it could have killed all of us. There was a photographer, the photographer’s assistant, and me all shooting. We had computer equipment tethered to everything and the rows of trees are not very far apart, so we were really squeezed in to get enough distance. And it was early March, so it was unbelievably cold.


Clone water sprout, Jessica Rath, archival pigment print on exhibition fiber, 2012.

I love this one [shown above], particularly because the horizon almost appears like it is an actual horizon, not just one created by the backdrop. For a second, you could think is there a cliff on the other side of the tree. And yet, behind the backdrop, the landscape is present in a sort of ghostlike way. For me, that’s part of the idea—that the landscape is constructed only as much as you need it to be in order to make the thing live.


Clone weeping with resistance, Jessica Rath, archival pigment print on exhibition fiber, 2012.

I also love the fact that there are allusions to the wind that’s there through the folds and ripples. I spent a lot of time working on these images in Photoshop, after the fact, cropping out and removing things—stray branches from other trees, and so on—that distracted from the composition. But I deliberately kept some of the ripples, because I liked the evidence of the physical tension in the landscape. It’s also part of pointing to the artifice. The backdrop doesn’t disappear, and so you remain aware that the whole thing is a construction.


Clone with early pubescence, Jessica Rath, archival pigment print on exhibition fiber, 2012.

The title of this one, Clone with early pubescence, [shown above] alludes to the fact that it’s budding too early, so it’s about to get cut down. It’s already dead to Susan, because it has no use. As we walked around, she was telling me about each of the trees—what will happen to them, or what is promising about them, or what she has used them for—and those stories definitely crept into the way I chose to frame and title the shots.

Twilley: Finally, I’m curious about your next project. I’ve heard a rumor that you’re working on something to do with bees—is that true?

Rath: Yes—well, tomatoes or bees. I loved Barry Estabrook’s Tomatoland. The idea of shipping tomatoes from Florida to New York in 1880, in a wagon? It’s crazy! [laughs] I’m doing a series of watercolors of tomatoes right now, which are very different than this. They combine scientific text with quotes from literature about redness, and blushes, and scarlet letters—all about how colors have been used to place judgment on things, and the gendered language that goes with that. There are a lot of “wenches” and “whores” in that series as well. Tasteless whores, too, because some of them are grocery-bought tomatoes. I’m playing with language like that with this series, which is a very different kind of playing than in this apple project—much less subtle.

The bee idea involves visiting Dr. Nieh’s laboratory in San Diego. He’s a bee expert and he has figured out all these incredible ways that bees are communicating, to which he’s given wonderful names like superorganism inhibitory signaling and olfactory eavesdropping.

I’m interested in doing an installation of a hive. It would be to human scale, and it would play with the biofeedback of the people in the hive, and how they interact, as well as the atmospheric conditions. The idea is to create a composition based on all those inputs that shifts in real-time, all based on the scientific research of Dr. Nieh into how bees communicate. I’m looking for a composer to work with on that right now.


Drap d'or gueneme, Jessica Rath, high-fire glazed porcelain, 2012.

Jessica Rath's apple sculptures and photographs are on display at the Pasadena Museum of California Art through February 24, 2013. Many thanks to Willy Blackmore for the suggestion!
 
  Getting more posts...