FeedIndex
Filter: New Mexico  view all
A landscape painting above Penny Boston's living room entryway depicts astronauts exploring Mars.

Penelope Boston is a speleo-biologist at New Mexico Tech, where she is Director of Cave and Karst Science. She graciously welcomed Venue to her home in Los Lunas, New Mexico, where we arrived with design futurist Stuart Candy in tow, en route to dropping him off at the Very Large Array later that day.

Boston's work involves studying subterranean ecosystems and their extremophile inhabitants here on Earth, in order to better imagine what sorts of environments and lifeforms we might encounter elsewhere in the Universe. She has worked with the NASA Innovative Advanced Concepts program (NIAC) to develop protocols for both human extraterrestrial cave habitation and for subterranean life-detection missions on Mars, life which she believes is highly likely to exist.

Over the course of the afternoon, Boston told Venue about her own experiences on Mars analog sites; she explained why she believes there is a strong possibility for life below the surface of the Red Planet, perhaps inside the planet's billion year-old networks of lava tubes; she described her astonishing (and terrifying) cave explorations here on Earth; and we touch on some mind-blowing ideas seemingly straight out of science fiction, including extreme forms of extraterrestrial life (such as dormant life on comets, thawed and reawakened with every passage close to the sun) and the extraordinary potential for developing new pharmaceuticals from cave microorganisms. The edited transcript of our conversation is below.

• • •


The Flashline Mars Arctic Research Station (FMARS) on Devon Island, courtesy the Mars Society.

Geoff Manaugh: As a graduate student, you co-founded the Mars Underground and then the Mars Society. You’re a past President of the Association of Mars Explorers, and you’re also now a member of the science team taking part in Mars Arctic 365, a new one-year Mars surface simulation mission set to start in summer 2014 on Devon Island. How does this long-term interest in Mars exploration tie into your Earth-based research in speleobiology and subterranean microbial ecosystems?

Penelope Boston: Even though I do study surface things that have a microbial component, like desert varnish and travertines and so forth, I really think that it’s the subsurface of Mars where the greatest chance of extant life, or even preservation of extinct life, would be found.

Nicola Twilley: Is it part of NASA’s strategy to go subsurface at any point, to explore caves on Mars or the moon?

Boston: Well, yes and no. The “Strategy” and the strategy are two different things.

The Mars Curiosity rover is a very capable chemistry and physics machine and I am, of course, dying to hear the details of the geochemistry it samples. A friend of mine, for instance, with whom I’m also a collaborator, is the principal investigator of the SAM instrument. Friends of mine are also on the CheMin instrument. So I have a vested interest, both professionally and personally, in the Curiosity mission.

On the other hand, you know: here we go again with yet another mission on the surface. It’s fascinating, and we still have a lot to learn there, but I hope I will live long enough to see us do subsurface missions on Mars and even on other bodies in the solar system.

Unfortunately, right now, we are sort of in limbo. The downturn in the global economy and our national economy has essentially kicked NASA in the head. It’s very unclear where we are going, at this point. This is having profound, negative effects on the Agency itself and everyone associated with it, including those of us who are external fundees and sort of circum-NASA.

On the other hand, although we don’t have a clear plan, we do have clear interests, and we have been pursuing preliminary studies. NASA has sponsored a number of studies on deep drilling, for example. One of the most famous was probably about 15 years ago, and it really kicked things off. That was up in Santa Fe, and we were looking at different methodologies for getting into the subsurface.

I have done a lot of work, some of which has been NASA-funded, on the whole issue of lava tubes—that is, caves associated with volcanism on the surface. Now, Glenn Cushing and Tim Titus at the USGS facility in Flagstaff have done quite a bit of serious work on the high-res images coming back from Mars, and they have identified lava tubes much more clearly than we ever did in our earlier work over the past decade.

Surface features created by lava tubes on Mars; image via ESA

Twilley: Are caves as common on Mars as they are on Earth? Is that the expectation?

Boston: I’d say that lava tubes are large, prominent, and liberally distributed everywhere on Mars. I would guess that there are probably more lava tubes on Mars than there are here on Earth—because here they get destroyed. We have such a geologically and hydro-dynamically active planet that the weathering rates here are enormous.

But on Mars we have a lot of factors that push in the other direction. I’d expect to find tubes of exceeding antiquity—I suspect that billions-of-year-old tubes are quite liberally sprinkled over the planet. That’s because the tectonic regime on Mars is quiescent. There is probably low-level tectonism—there are, undoubtedly, Marsquakes and things like that—but it’s not a rock’n’roll plate tectonics like ours, with continents galloping all over the place, and giant oceans opening up across the planet.

That means the forces that break down lava tubes are probably at least an order of magnitude or more—maybe two, maybe three—less likely to destroy lava tubes over geological time. You will have a lot of caves on Mars, and a lot of those caves will be very old.

Plus, remember that you also have .38 G. The intrinsic tensile strength of the lava itself, or whatever the bedrock is, is also going to allow those tubes to be much more resistant to the weaker gravity there.

Surface features of lava tubes on Mars; image via ESA

Manaugh: I’d imagine that, because the gravity is so much lower, the rocks might also behave differently, forming different types of arches, domes, and other formations underground. For instance, large spans and open spaces would be shaped according to different gravitational strains. Would that be a fair expectation?

Boston: Well, it’s harder to speculate on that because we don’t know what the exact composition of the lava is—which is why, someday, we would love to get a Mars sample-return mission, which is no longer on the books right now. [sighs] It’s been pushed off.

In fact, I just finished, for the seventh time in my career, working on a panel on that whole issue. This was the E2E—or End-to-End—group convened by Dave Beatty, who is head of the Mars Program at the Jet Propulsion Laboratory [PDF].

About a year ago, we finished doing some intensive international work with our European Space Agency partners on Mars sample-return—but now it’s all been pushed off again. The first one of those that I worked on was when I was an undergraduate, almost ready to graduate at Boulder, and that was 1979. It just keeps getting pushed off.

I’d say that we are very frustrated within the planetary and astrobiology communities. We can use all these wonderful instruments that we load onto vehicles like Curiosity and we can send them there. We can do all this fabulous orbital stuff. But, frankly speaking, as a person with at least one foot in Earth science, until you’ve got the stuff in your hands—actual physical samples returned from Mars—there is a lot you can’t do.

Looking down through a "skylight" on Mars; image via NASA/JPL/University of Arizona

Image via NASA/JPL/University of Arizona

Twilley: Could you talk a bit about your work with exoplanetary research, including what you’re looking for and how you might find it?

Boston: [laughs] The two big questions!

But, yes. We are working on a project at Socorro now to atmospherically characterize exoplanets. It’s called NESSI, the New Mexico Exoplanet Spectroscopic Survey Instrument. Our partner is Mark Swain, over at JPL. They are doing it using things like Kepler, and they have a new mission they’re proposing, called FINESSE. FINESSE will be a dedicated exoplanet atmospheric characterizer.

We are also trying to do that, in conjunction with them, but from a ground-based instrument, in order to make it more publicly accessible to students and even to amateur astronomers.

That reminds me—one of the other people you might be interested in talking to is a young woman named Lisa Messeri, who just recently finished her PhD in Anthropology at MIT. She’s at the University of Pennsylvania now. Her focus is on how scientists like me to think about other planets as other worlds, rather than as mere scientific targets—how we bring an abstract scientific goal into the familiar mental space where we also have recognizable concepts of landscape.

I’ve been obsessed with that my entire life: the concept of space, and the human scaling of these vastly scaled phenomena, is central, I think, to my emotional core, not just the intellectual core.

The Allan Hills Meteorite (ALH84001); courtesy of NASA.

Manaugh: While we’re on the topic of scale, I’m curious about the idea of astrobiological life inhabiting a radically, undetectably nonhuman scale. For example, one of the things you’ve written and lectured about is the incredible slowness it takes for some organisms to form, metabolize, and articulate themselves in the underground environments you study. Could there be forms of astrobiological life that exist on an unbelievably different timescale, whether it’s a billion-year hibernation cycle that we might discover at just the wrong time and mistake, say, for a mineral? Or might we find something on a very different spatial scale—for example, a species that is more like a network, like an aspen tree or a fungus?

Boston: You know, Paul Davies is very interested in this idea—the concept of a shadow biosphere. Of course, I had also thought about this question for many years, long before I read about Davies or before he gave it a name.

The conundrum you face is how you would know—how you would study or even conceptualize—these other biospheres? It’s outside of your normal spatial and temporal comfort zone, in which all of your training and experience has guided you to look, and inside of which all of your instruments are designed to function. If it’s outside all of that, how will you know it when you see it?

Imagine comets. With every perihelion passage, volatile gases escape. You are whipping around the solar system. Your body comes to life for that brief period of time only. Now apply that to icy bodies in very elliptical orbits in other solar systems, hosting life with very long periods of dormancy.

There are actually some wonderful early episodes of The Twilight Zone that tap into that theme, in a very poetic and literary way. [laughs] Of course, it’s also the central idea of some of the earliest science fiction; I suppose Gulliver’s Travels is probably the earliest exploration of that concept.

In the microbial realm—to stick with what we do know, and what we can study—we are already dealing with itsy-bitsy, teeny-weeny things that are devilishly difficult to understand. We have a lot of tools now that enable us to approach those, but, very regularly, we’ll see things in electron microscopy that we simply can’t identify and they are very clearly structured. And I don’t think that they are all artifacts of the preparation—things that get put there accidentally during prep.

A lot of the organisms that we actually grow, and with which we work, are clearly nanobacteria. I don’t know how familiar you are with that concept, but it has been extremely controversial. There are many artifacts out there that can mislead us, but we do regularly see organisms that are very small. So how small can they be—what’s the limit?

A few of the early attempts at figuring this out were just childish. That’s a mean thing to say, because a lot of my former mentors have written some of those papers, but they would say things like: “Well, we need to conduct X, Y, and Z metabolic pathways, so, of course, we need all this genetic machinery.” I mean, come on, you know that early cells weren’t like that! The early cells—who knows what they were or what they required?

To take the famous case of the ALH84001 meteorite: are all those little doobobs that you can see in the images actually critters? I don’t know. I think we’ll never know, at least until we go to Mars and bring back stuff.

I have relatively big microbes in my lab that regularly feature little knobs and bobs and little furry things, that I am actually convinced are probably either viruses or prions or something similar. I can’t get a virologist to tell me yes. They are used to looking at viruses that they can isolate in some fashion. I don’t know how to get these little knobby bobs off my guys for them to look at.

The Allan Hills Meteorite (ALH84001); courtesy of NASA.

Twilley: In your paper on the human utilization of subsurface extraterrestrial environments [PDF], you discuss the idea of a “Field Guide to Unknown Organisms,” and how to plan to find life when you don’t necessarily know what it looks like. What might go into such a guide?

Boston: The analogy I often use with graduate students when I teach astrobiology is that, in some ways, it’s as if we are scientists on a planet orbiting Alpha Centauri and we are trying to write a field guide to the birds of Earth. Where do you start? Well, you start with whatever template you have. Then you have to deeply analyze every feature of that template and ask whether each feature is really necessary and which are just a happenstance of what can occur.

I think there are fundamental principles. You can’t beat thermodynamics. The need for input and outgoing energy is critical. You have to be delicately poised, so that the chemistry is active enough to produce something that would be a life-like process, but not so active that it outstrips any ability to have cohesion, to actually keep the life process together. Water is great as a solvent for that. It’s probably not the only solvent, but it’s a good one. So you can look for water—but do you really need to look for water?

I think you have to pick apart the fundamental assumptions. I suspect that predation is a relatively universal process. I suspect that parasitism is a universal process. I think that, with the mathematical work being done on complex, evolving systems, you see all these emerging properties.

Now, with all of that said, the details—the sizes, the scale, the pace, getting back to what we were just talking about—I think there is huge variability in there.

Caves on Mars; images courtesy of NASA/JPL-Caltech/ASU/USGS.

Twilley: How do you train people to look for unrecognizable life?

Boston: I think everybody—all biologists—should take astrobiology. It would smack you on the side of the head and say, “You have to rethink some of these fundamental assumptions! You can’t just coast on them.”

The organisms that we study in the subsurface are so different from the microbes that we have on the surface. They don’t have any predators—so, ecologically, they don’t have to outgrow any predators—and they live in an environment where energy is exceedingly scarce. In that context, why would you bother having a metabolic rate that is as high as some of your compatriots on the surface? You can afford to just hang out for a really long time.

We have recently isolated a lot of strains from these fluid inclusions in the Naica caves—the one with those gigantic crystals. It’s pretty clear that these guys have been trapped in these bubbles between 10,000 and 15,000 years. We’ve got fluid inclusions in even older materials—in materials that are a few million years old, even, in a case we just got some dates for, as much as 40 million years.


Naica Caves, image from the official website. The caves are so hot that explorers have to wear special ice-jackets to survive.

One of the caveats is, of course, that when you go down some distance, the overlying lithostatic pressure of all of that rock makes space impossible. Microbes can’t live in zero space. Further, they have to have at least inter-grain spaces or microporosity—there has to be some kind of interconnectivity. If you have organisms completely trapped in tiny pockets, and they never interact, then that doesn’t constitute a biosphere. At some point, you also reach temperatures that are incompatible with life, because of the geothermal gradient. Where exactly that spot is, I don’t know, but I’m actually working on a lot of theoretical ideas to do with that.

In fact, I’m starting a book for MIT Press that will explore some of these ideas. They wanted me to write a book on the cool, weird, difficult, dangerous places I go to and the cool, weird, difficult bugs I find. That’s fine—I’m going to do that. But, really, what I want to do is put what we have been working on for the last thirty years into a theoretical context that doesn’t just apply to Earth but can apply broadly, not only to other planets in our solar system, but to one my other great passions, of course, which is exoplanets—planets outside the solar system.

One of the central questions that I want to explore further in my book, and that I have been writing and talking about a lot, is: what is the long-term geological persistence of organisms and geological materials? I think this is another long-term, evolutionary repository for living organisms—not just fossils—that we have not tapped into before. I think that life gets recycled over significant geological periods of time, even on Earth.

That’s a powerful concept if we then apply it to somewhere like Mars, for example, because Mars does these obliquity swings. It has super-seasonal cycles. It has these little dimple moons that don’t stabilize it, whereas our moon stabilizes the Earth’s obliquity level. That means that Mars is going through these super cold and dry periods of time, followed by periods of time where it’s probably more clement.

Now, clearly, if organisms can persist for tens of thousands of years—let alone hundreds of thousands of years, and possibly even millions of years—then maybe they are reawakenable. Maybe you have this very different biosphere.

Manaugh: Like a biosphere in waiting.

Boston: Yes—a biosphere in waiting, at a much lower level.

Recently, I have started writing a conceptual paper that really tries to explore those ideas. The genome that we see active on the surface of any planet might be of two types. If you have a planet like Earth, which is photosynthetically driven, you’re going to have a planet that is much more biological in terms of the total amount of biomass and the rates at which this can be produced. But that might not be the only way to run a biosphere.

You might also have a much more low-key biosphere that could actually be driven by geochemical and thermal energy from the inside of the planet. This was the model that we—myself, Chris McKay, and Michael Ivanoff, one of our colleagues from what was the Soviet Union at the time—published more than twenty years ago for Mars. We suggested that there would be chemically reduced gases coming from the interior of the planet.

That 1992 paper was what got us started on caves. I had never been in a wild cave in my life before. We were looking for a way to get into that subsurface space. The Department of Energy was supporting a few investigators, but they weren’t about to share their resources. Drilling is expensive. But caves are just there; you can go inside them.

So that’s really what got us into caving. It was at that point where I discovered caves are so variable and fascinating, and I really refocused my career on that for the last 20 years.


Lechuguilla Cave, photograph by Dave Bunnell.


Penelope Boston caving, image courtesy of V. Hildreth-Werker, from "Extraterrestrial Caves: Science, Habitat, Resources," NIAC Phase I Study Final Report, 2001.

The first time I did any serious caving was actually in Lechuguilla Cave. It was completely nuts to make that one’s first wild cave. We trained for about three hours, then we launched into a five-day expedition into Lechuguilla that nearly killed us! Chris McKay came out with a terrible infection. I had a blob of gypsum in my eye and an infection that swelled it shut. I twisted my ankle. I popped a rib. Larry Lemke had a massive migraine. We were not prepared for this. The people taking us in should have known better. But one of them is a USGS guide and a super caving jock, so it didn’t even occur to him—it didn’t occur to him that we were learning instantaneously to operate in a completely alien landscape with totally inadequate skills.

All I knew was that I was beaten to a pulp. I could almost not get across these chasms. I’m a short person. Everybody else was six feet tall. I felt like I was just hanging on long enough so I could get out and live. I've been in jams before, including in Antarctica, but that’s all I thought of the whole five days: I just have to live through this.

But, when I got out, I realized that what the other part of my brain had retained was everything I had seen. The bruises faded. My eye stopped being infected. In fact, I got the infection from looking up at the ceiling and having some of those gooey blobs drip down into my eye—but, I was like, “Oh my God. This is biological. I just know it is.” So it was a clue. And, when, I got out, I knew I had to learn how to do this. I wanted to get back in there.

ESA astronauts on a "cave spacewalk" during a 2011 training mission in the caves of Sardinia; image courtesy of the ESA.

Manaugh: You have spoken about the possibility of entire new types of caves that are not possible on Earth but might be present elsewhere. What are some of these other cave types you think might exist, and what sort of conditions would have formed them? You’ve used some great phrases to describe those processes—things like “volatile labyrinths” and “ice volcanism” that create speleo-landscapes that aren’t possible on Earth.

Boston: Well, in terms of ice, I’ll bet there are all sorts of Lake Vostok-like things out there on other moons and planets.

The thing with Lake Vostok is that it’s not a "lake." It’s a cave: a cave in ice. The ice, in this case, acts as bedrock, so it’s not a lake at all. It’s a closed system.

Manaugh: It’s more like a blister: an enclosed space full of fluid.

Boston: Exactly. In terms of speculating on the kinds of caves that might exist elsewhere in the universe, we are actually working on a special issue for the Journal of Astrobiology right now, based on the extraterrestrial planetary caves meeting that we did last October. We brought people from all over the place. This is a collaboration between my Institute—the National Cave and Karst Research Institute in Carlsbad, where we have our headquarters—and the Lunar and Planetary Institute.

The meeting was an attempt to explore these ideas. Karl Mitchell from JPL, who I had not met previously, works on Titan; he’s on the Cassini Huygens mission. He thinks he is seeing karst-like features on Titan. Just imagine that! Hydrocarbon fluids producing karst-like features in water-ice bedrock—what could be more exotic than that?

That also shows that the planetary physics dominates in creating these environments. I used to think that the chemistry dominated. I don’t think so anymore. I think that the physics dominates. You have to step away from the chemistry at first and ask: what are the fundamental physics that govern the system? Then you can ask: what are the fundamental chemical potentials that govern the system that could produce life? It’s the same exercise with imagining what kind of caves you can get—and I have a lurid imagination.


From "Human Utilization of Subsurface Extraterrestrial Environments," P. J. Boston, R. D. Frederick, S. M. Welch, J. Werker, T. R. Meyer, B. Sprungman, V. Hildreth-Werker, S. L. Thompson, and D. L. Murphy, Gravitational and Space Biology Bulletin 16(2), June 2003.

One of the fun things I do in my astrobiology class every couple of years is the capstone project. The students break down into groups of four or five, hopefully well-mixed in terms of biologists, engineers, chemists, geologists, physicists, and other backgrounds.

Then they have to design their own solar system, including the fundamental, broad-scale properties of its star. They have to invent a bunch of planets to go around it. And they have to inhabit at least one of those planets with some form of life. Then they have to design a mission—either telescopic or landed—that could study it. They work on this all semester, and they are so creative. It’s wonderful. There is so much value in imagining the biospheres of other planetary bodies.

You just have to think: “What are the governing equations that you have on this planet or in this system?” You look at the gravitational value of a particular body, its temperature regime, and the dominant geochemistry. Does it have an atmosphere? Is it tectonic? One of the very first papers I did—it appeared in one of these obscure NASA special publications, of which they print about 100 and nobody can ever find a copy—was called “Bubbles in the Rocks.” It was entirely devoted to speculation about the properties of natural and artificial caves as life-support structures. A few years later, I published a little encyclopedia article, expanding on it, and I’m now working on another expansion, actually.

I think that, either internally, externally, or both, planetary bodies that form cracks are great places to start. If you then have some sort of fluid—even episodically—within that system, then you have a whole new set of cave-forming processes. Then, if you have a material that can exist not only in a solid phase, but also as a liquid or, in some cases, even in a vapor phase on the same planetary body, then you have two more sets of potential cave-forming processes. You just pick it apart from those fundamentals, and keep building things up as you think about these other cave-forming systems and landscapes.

ESA astronauts practice "cavewalking"; image courtesy ESA-V. Corbu.

Manaugh: One of my favorite quotations is from a William S. Burroughs novel, where he describes what he calls “a vast mineral consciousness at absolute zero, thinking in slow formations of crystal.”

Boston: Oh, wow.

Manaugh: I mention that because I’m curious about how the search for “extraterrestrial life” always tends to be terrestrial, in the sense that it’s geological and it involves solid planetary formations. But what about the search for life on a gaseous planet—would life be utterly different there, chemically speaking, or would it simply be sort of dispersed, or even aerosolized? I suppose I’m also curious if there could be a “cave” on a gaseous planet and, if so, would it really just be a weather system? Is a “cave” on a gaseous planet actually just a storm? Or, to put it more abstractly, can there be caves without geology?

Boston: Hmm. Yes, I think there could be. If it was enclosed or self-perpetuating.

Manaugh: Like a self-perpetuating thermal condition in the sky. It would be a sort of atmospheric “cave.”

Twilley: It would be a bubble.

ESA astronauts explore caves in Sardinia; image courtesy ESA–R. Bresnik.

Boston: In terms of life that could exist in a permanent, fluid medium that was gaseous—rather than a compressed fluid, like water—Carl Sagan and Edwin Salpeter made an attempt at that, back in 1975. In fact, I use their "Jovian Gasbags" paper as a foundational text in my astrobiology classes.

But an atmospheric system like Jupiter is dominated—just like an ocean is—by currents. It’s driven by thermal convection cells, which are the weather system, but it’s at a density that gives it more in common with our oceans than with our sky. And we are already familiar with the fact that our oceans, even though they are a big blob of water, are spatially organized into currents, and they are controlled by density, temperature, and salinity. The ocean has a massively complex three-dimensional structure; so, too, does the Jovian atmosphere. So a gas giant is really more like a gaseous ocean I think.

Now, the interior machinations that go on in inside a planet like Jupiter are driving these gas motions. There is a direct analogy here to the fact that, on our rocky terrestrial planet, which we think of as a solid Earth, the truth is that the mantle is plastic—in fact, the Earth’s lower crust is a very different substance from what we experience up here on this crusty, crunchy top, this thing that we consider solid geology. Whether we’re talking about a gas giant like Jupiter or the mantle of a rocky planet like Earth, we are really just dealing with different regimes of density—and, here again, it’s driven by the physics.

ESA astronauts set up an experimental wind-speed monitoring station in the caves of Sardinia; image courtesy ESA/V. Crobu.

A couple of years ago, I sat in on a tectonics class that one of my colleagues at New Mexico Tech was giving, which was a lot of fun for me. Everybody else was thinking about Earth, and I was thinking about everything but Earth. For my little presentation in class, what I tried to do was think about analogies to things on icy bodies—to look at Europa, Titan, Enceledus, Ganymede, and so forth, and to see how they are being driven by the same tectonic processes, and even producing the same kind of brittle-to-ductile mantle transition, but in ice rather than rock.

I think that, as we go further and further in the direction of having to explain what we think is going on in exoplanets, it’s going to push some of the geophysics in that direction, as well. There is amazingly little out there. I was stunned, because I know a lot of planetary scientists who are thinking about this kind of stuff, but there is a big gulf between Earth geophysics and applying those lessons to exoplanets.

ESA astronauts prepare for their 2013 training mission in the caves of Sardinia; image courtesy ESA-V. Crobu.

Manaugh: We need classes in speculative geophysics.

Boston: Yeah—come on, geophysicists! [laughs] Why shouldn’t they get in the game? We’ve been doing it in astrobiology for a long time.

In fact, when I’ve asked my colleagues certain questions like, “Would we even get orogeny on a three Earth-mass planet?” They are like, “Um… We don’t know.” But you know what? I bet we have the equations to figure that out.

It starts with something as simple as that: in different or more extreme gravitational regimes, could you have mountains? Could you have caves? How could you calculate that? I don’t know the answer to that—but you have to ask it.

ESA astronauts take microbiological samples during a 2011 training mission in the caves of Sardinia; image courtesy of the ESA.

Twilley: You’re a member of NASA’s Planetary Protection Subcommittee. Could you talk a little about what that means? I’m curious whether the same sorts of planetary protection protocols we might use on other planets like Mars should also be applied to the Earth’s subsurface. How do we protect these deeper ecosystems? And how do we protect deeper ecosystems on Mars, assuming there are any?

Boston: That’s a great question. We are working extremely hard to do that, actually.

Planetary protection is the idea that we must protect Earth from off-world contaminants. And, of course, vice versa: we don’t want to contaminate other planets, both for scientific reasons and, at least in my case, for ethical reasons, with biological material from Earth.

In other words, I think we owe it to our fellow bodies in the solar system to give them a chance to prove their biogenicity or not, before humans start casually shedding our skin cells or transporting microbes there.

That’s planetary protection, and it works both ways.

One thing I have used as a sales pitch in some of my proposals is the idea that we are attempting to become more and more noninvasive in our cave exploration, which is very hard to do. For example, we have pushed all of our methods in the direction of using miniscule quantities of sample. Most Earth scientists can just go out and collect huge chunks of rock. Most biologists do that, too. You grow E. coli in the lab and you harvest tons of it. But I have to take just a couple grams of material—on a lucky day—sometimes even just milligrams of material, with very sparse bio density in there. I have to work with that.

What this means is that the work we are doing also lends itself really well to developing methods that would be useful on extraterrestrial missions.

In fact, we are pushing in the direction of not sampling at all, if we can. We are trying to see what we can learn about something before we even poke it. So, in our terrestrial caving work, we are actually living the planetary protection protocol.

We are also working in tremendously sensitive wilderness areas and we are often privileged enough to be the only people to get in there. We want to minimize the potential contamination.

That said, of course, we are contaminant sources. We risk changing the environment we’re trying to study. We struggle with this. I struggle with it physically and methodologically. I struggle with it ethically. You don’t want to screw up your science and inadvertently test your own skin bugs.

I’d say this is one of those cases where it’s not unacceptable to have a nonzero risk—to use a double negative again. There are few things in life that I would say that about. Even in our ridiculous risk-averse culture, we understand that for most things, there is a nonzero risk of basically anything. There is a nonzero risk that we’ll be hit by a meteorite now, before we are even done with this interview. But it’s pretty unlikely.

In this case, I think it’s completely unacceptable to run much of a risk at all.

That said, the truth is that pathogens co-evolve with their hosts. Pathogenesis is a very delicately poised ecological relationship, much more so than predation. If you are made out of the same biochemistry I’m made of, the chances are good that I can probably eat you, assuming that I have the capability of doing that. But the chances that I, as a pathogen, could infect you are miniscule. So there are different degrees of danger.

There is also the alien effect, which is well known in microbiology. That is that there is a certain dose of microbes that you typically need to get in order for them to take hold, because they are coming into an area where there’s not much ecological space. They either have to be highly pre-adapted for whatever the environment is that they land in, or they have to be sufficiently numerous so that, when they do get introduced, they can actually get a toehold.

We don’t really understand some of the fine points of how that occurs. Maybe it’s quorum sensing. Maybe it’s because organisms don’t really exist as single strains at the microbial level and they really have to be in consortia—in communities—to take care of all of the functions of the whole community.

We have a very skewed view of microbiology, because our knowledge comes from a medical and pathogenesis history, where we focus on single strains. But nobody lives like that. There are no organisms that do that. The complexity of the communal nature of microorganisms may be responsible for the alien effect.

So, given all of that, do I think that we are likely to be able to contaminate Mars? Honestly, no. On the surface, no. Do I act as if we can? Yes—absolutely, because the stakes are too high.

Now, do I think we could contaminate the subsurface? Yes. You are out of the high ultraviolet light and out of the ionizing radiation zone. You would be in an environment much more likely to have liquid water, and much more likely to be in a thermal regime that was compatible with Earth life.

So you also have to ask what part of Mars you are worried about contaminating.

ESA teams perform bacterial sampling and examine a freshwater supply; top photo courtesy ESA–V. Crobu; bottom courtesy ESA/T. Peake.

Manaugh: There’s been some interesting research into the possibility of developing new pharmaceuticals from these subterranean biospheres—or even developing new industrial materials, like new adhesives. I’d love to know more about your research into speleo-pharmacology or speleo-antibiotics—drugs developed from underground microbes.

Boston: It’s just waiting to be exploited. The reasons that it has not yet been done have nothing to do with science and nothing to do with the tremendous potential of these ecosystems, and everything to do with the bizarre and not very healthy economics of the global drug industry. In fact, I just heard that someone I know is leaving the pharmaceutical industry, because he can’t stand it anymore, and he’s actually going in the direction of astrobiology.

Really, there is a de-emphasis on drug discovery today and more of an emphasis on drug packaging. It is entirely profit-driven motive, which is distasteful, I think, and extremely sad. I see a real niche here for someone who doesn’t want to become just a cog in a giant pharmaceutical company, someone who wants to do a small start-up and actually do drug discovery in an environment that is astonishingly promising.

It’s not my bag; I don’t want to develop drugs. But I see our organisms producing antibiotics all the time. When we grow them in culture, I can see where some of them are oozing stuff—pink stuff and yellow stuff and clear stuff. And you can see it in nature. If you go to a lava tube cave, here in New Mexico, you see they are doing it all the time.

A lot of these chemistry tests screen for mutagenic activity, chemogenic activity, and all of the other things that are indications of cancer-fighting drugs and so on, and we have orders of magnitude more hits from cave stuff than we do from soils. So where is everybody looking? In soils. Dudes! I’ve got whole ecosystems in one pool that are different from an ecosystem in another pool that are less than a hundred feet apart in Lechuguilla Cave! The variability—the non-homogeneity of the subsurface—vastly exceeds the surface, because it’s not well mixed.

ESA astronauts prepare their experiments and gear for a 2013 CAVES ("Cooperative Adventure for Valuing and Exercising human behaviour and performance Skills") mission in Sardinia; image courtesy ESA–V. Crobu

Twilley: In your TED talk, you actually say that the biodiversity in caves on Earth may well exceed the entire terrestrial biosphere.

Boston: Oh, yes—certainly the subsurface. There is a heck of a lot of real estate down there, when you add all those rock-fracture surface areas up. And each one of these little pockets is going off on its own evolutionary track. So the total diversity scales with that. It’s astonishing to me that speleo-bioprospecting hasn’t taken off already. I keep writing about it, because I can’t believe that there aren’t twenty-somethings out there who don’t want to go work for big pharma, who are fascinated by this potential for human use.

There is a young faculty member at the University of New Mexico in Albuquerque, whose graduate student is one of our friends and cavers, and they are starting to look at some of these. I’m like, “Go for it! I can supply you with endless cultures.”

Twilley: In your “Human Mission to Inner Space” experiment, you trialed several possible Martian cave habitat technologies in a one-week mission to a closed cave with a poisonous atmosphere in Arizona. As part of that, you looked into Martian agriculture, and grew what you called “flat crops.” What were they?

Boston: We grew great duckweed and waterfern. We made duckweed cookies. Gus made a rice and duckweed dish. It was quite tasty. [laughs] We actually fed two mice on it exclusively for a trial period, but although duckweed has more protein than soybeans, there weren’t enough carbohydrates to sustain them calorically.

But the duckweed idea was really just to prove a point. A great deal of NASA’s agricultural research has been devoted to trying to grow things for astronauts to make them happier on the long, outbound trips—which is very important. It is a very alien environment and I think people underestimate that. People who have not been in really difficult field circumstances have no apparent understanding of the profound impact of habitat on the human psyche and our ability to perform. Those of us who have lived in mock Mars habitats, or who have gone into places like caves, or even just people who have traveled a lot, outside of their comfort zone, know that. Your circumstances affect you.

One of the things we designed, for example, was a way to illuminate an interior subsurface space by projecting a light through fluid systems—because you’d do two things. You’d get photosynthetic activity of these crops, but you’d also get a significant amount of very soothing light into the interior space.

We had such a fabulous time doing that project. We just ran with the idea of: what you can do to make the space that a planet has provided for you into actual, livable space.

From Boston's presentation report on the Human Utilization of Subsurface Extraterrestrial Environments, NIAC Phase II study (PDF).

Twilley: Earlier on our Venue travels, we actually drove through Hanksville, Utah, where many of the Mars analog environment studies are done.

Boston: I’ve actually done two crews there. It’s incredibly effective, considering how low-fidelity it is.

Twilley: What makes it so effective?

Boston: Simple things are the most critical. The fact that you have to don a spacesuit and the incredible cumbersomeness of that—how it restricts your physical space in everything from how you turn your head to how your visual field is limited. Turning your head doesn’t work anymore, because you just look inside your helmet; your whole body has to turn, and it can feel very claustrophobic.

Then there are the gloves, where you’ve got your astronaut gloves on and you’re trying to manipulate the external environment without your normal dexterity. And there’s the cumbersomeness and, really, the psychological burden of having to simulate going through an airlock cycle. It’s tremendously effective. Being constrained with the same group of people, it is surprisingly easy to buy into the simulation. It’s not as if you don’t know you’re not on Mars, but it doesn’t take much to make a convincing simulation if you get those details right.

The Mars Desert Research Station, Hanksville, Utah; image courtesy of bandgirl807/Wikipedia.

I guess that’s what was really surprising to me, the first time I did it: how little it took to be transform your human experience and to really cause you to rethink what you have to do. Because everything is a gigantic pain in the butt. Everything you know is wrong. Everything you think in advance that you can cope with fails in the field. It is a humbling experience, and an antidote to hubris. I would like to take every engineer I know that works on space stuff—

Twilley: —and put them in Hanksville! [laughter]

Boston: Yes—seriously! I have sort of done that, by taking these loafer-wearing engineers—most of whom are not outdoorsy people in any way, who haunt the halls of MIT and have absorbed the universe as a built environment—out to something as simple as the lava tubes. I could not believe how hard it was for them. Lava tubes are not exactly rigorous caving. Most of these are walk-in, with only a little bit of scrambling, but you would have thought we’d just landed on Mars. It was amazing for some of them, how totally urban they are and how little experience they have of coping with a natural space. I was amazed.

I actually took a journalist out to a lava tube one time. I think this lady had never left her house before! There’s a little bit of a rigorous walk over the rocks—but it was as if she had never walked on anything that was not flat before.

From Venue's own visit to a lava tube outside Flagstaff, AZ.

It’s just amazing what one’s human experience does. This is why I think engineers should be forced to go out into nature and see if the systems they are designing can actually work. It’s one of the best ways for them to challenge their assumptions, and even to change the types of questions they might be asking in the first place.


Venue took a long afternoon detour south of Los Alamos, New Mexico, to hike the surreal geological formations of the all but unknown Kasha-Katuwe Tent Rocks National Monument—a kind of American Cappadocia of weirdly repeating pinnacles shaped like fairy tale magic hats and glowing white in the constant sunlight.

Images of Kasha-Katuwe Tent Rocks National Monument courtesy of the New Mexico Bureau of Land Management.

Similar to the visual pyrotechnics on display at sites such as Bryce Canyon National Park in Utah, at times it seems as if the rock pillars are stuttering out of the hillsides, repetitive echoes of themselves and each other. You can almost see the formations marching forward out of the earth, one after the other, to be revealed slowly, over eons of time, for thousands, perhaps millions, of generations to come.



In fact, parts of the National Monument often look, in photographs, as if a processing bug has somehow cloned the slender columns and what we're seeing is not natural earthworks at all but a kind of representational error, a planetary glitch, the surface of the earth time-stretched.

However, it's all just differential weathering: the erosion of incredible stone shapes from the earth, like a mineralogical garden as designed by Max Ernst.



Every few seasons, flash floods roar through and reduce the ground level another few feet; tree roots now grow as if in midair and more and more bewildering rock formations are revealed. The slower, or less immediate, action of snow joins the chorus of forces taking the landscape apart each winter. Where the earth being locally dismantled reaches its most otherworldly extremes, we declare our national parks and monuments.



For all of its geologic complexity, however, Kasha-Katuwe—which means "white cliffs"—is neither large nor particularly strenuous from the point of view of hiking. Still, it feels so much like Turkey's Cappadocia region that it's tempting to propose a geological sister-park program, or some other administrative way of combining, and thus drawing connections between, geologically similar regions in very different parts of the world.

Image of Kasha-Katuwe Tent Rocks National Monument courtesy of the New Mexico Bureau of Land Management.

Also like Cappadocia, Kasha-Katuwe has a long history of human habitation. The Monument itself includes several archaeological sites, including the cliff cave—or "cavate"—shown below. Curiously, a typo on the BLM's signage within the park labels it a "caveat," instead, suggesting that the human role in helping to shape this landscape is just a minor and relatively temporary exception.



The cavate, part of a whole regional complex of formerly inhabited caves stretching north from Kasha-Katuwe into Bandelier National Monument and beyond, has the effect of making humans seem vaguely sponge-like: reef-dwellers for whom civilization is more like a perforation in the landscape, a cut, hole, or pore excavated from the earth and made habitable as "architecture."

Images (top, bottom) of "cavates" from Bandelier National Monument; photos by Sally King/NPS, courtesy of Bandelier National Monument.

For their part, the Bureau of Land Management describes Kasha-Katuwe as a "remarkable outdoor laboratory, offering an opportunity to observe, study, and experience the geologic processes that shape natural landscapes."

In this case, the BLM explains, what we see now is the after-effect of widespread volcanic eruptions that occurred as long as 7 million years ago, "leaving pumice, ash and tuff deposits over 1,000 feet thick." The tent-rocks formations—also known as hoodoos, fairy chimneys, and even, in French, demoiselles coiffées, or ladies with hairdos—were then sculpted by a process of erosion, described by the New Mexico Bureau of Geology and Mineral Resources as follows:

Water and, to a lesser extent, wind erosion preferentially attacks the sand and ash grains around the base of large blocks in the gravel-rich beds. Eventually, the gravel clasts rest on pedestals, thus protecting the underlying sand and ash from further erosion. As time passes, the capstones are gradually undermined and the rocks topple, leaving an unprotected cone.



Put another way, as one ancient landscape, violently laminated atop an even older surface now lost somewhere far below it, begins to be erased, parts of it hang on, temporarily protected by the shelter of yet another more recent and resilient surface above. Slicing—or, in architectural terms, cutting sections—through these multiply intertwined surfaces are now slot canyons and trails.



The Monument's geological revenants form oddly stacked and twisting forms, strangely melancholic remnants doomed to disappear as many more millions of years of wind, rain, and snow scrub the ground of these temporary mountain ranges, preparing for future terrains to come.



The whole National Monument brings to mind an image of geological sculpture described by author China Miéville in his novel Iron Council.

There, Miéville describes something called "slow sculpture," a planetary artform in which outsized blocks of sandstone are "carefully prepared: shafts drilled precisely, caustic agents dripped in, for a slight and so-slow dissolution of rock in exact planes, so that over years of weathering, slabs would fall in layers, coming off with the rain, and at very last disclosing their long-planned shapes. Slow-sculptors never disclosed what they had prepared, and their art revealed itself only long after their deaths."



Kasha-Katuwe Tent Rocks National Monument, with its winding canyons and time-echoed rock formations, makes a compelling day trip for anyone interested in hiking the earth's own version of slow sculpture, an ever-changing procession of tented pillars, canyons, caves, and labyrinths, scooped in rippling contours out of the soft, white rock.


When European farmers arrived in North America, they claimed it with fences. Fences were the physical manifestation of a belief in private ownership and the proper use of land—enclosed, utilized, defended—that continues to shape the American way of life, its economic aspirations, and even its form of government.

Today, fences are the framework through the national landscape is seen, understood, and managed, forming a vast, distributed, and often unquestioned network of wire that somehow defines the "land of the free" while also restricting movement within it.

In the 1870s, the U.S. faced a fence crisis. As settlers ventured away from the coast and into the vast grasslands of the Great Plains, limited supplies of cheap wood meant that split-rail fencing cost more than the land it enclosed. The timely invention of barbed wire in 1874 allowed homesteaders to settle the prairie, transforming its grassland ecology as dramatically as the industrial quantities of corn and cattle being produced and harvested within its newly enclosed pastures redefined the American diet.

In Las Cruces, New Mexico, Venue met with Dean M. Anderson, a USDA scientist whose research into virtual fencing promises equally radical transformation—this time by removing the mile upon mile of barbed wire stretched across the landscape. As seems to be the case in fencing, a relatively straightforward technological innovation—GPS-equipped free-range cows that can be nudged back within virtual bounds by ear-mounted stimulus-delivery devices—has implications that could profoundly reshape our relationships with domesticated animals, each other, and the landscape.

In fact, after our hour-long conversation, it became clear to Venue that Anderson, a quietly-spoken federal research scientist who admits to taping a paper list of telephone numbers on the back of his decidedly unsmart phone, keeps exciting if unlikely company with the vanguard of the New Aesthetic, writer and artist James Bridle's term for an emerging way of perceiving (and, in this case, apportioning) digital information under the influence of the various media technologies—satellite imagery, RFID tags, algorithmic glitches, and so on—through which we now filter the world.


The Google Maps rainbow plane, an iconic image of the New Aesthetic for the way in which it accidentally captures the hyperspectral oddness of new representational technologies and image-compression algorithms on a product intended for human eyes.

After all, Anderson's directional virtual fencing is nothing less than augmented reality for cattle, a bovine New Aesthetic: the creation of a new layer of perceptual information that can redirect the movement of livestock across remote landscapes in real-time response to lines humans can no longer see. If gathering cows on horseback gave rise to the cowboy narratives of the West, we might ask in this context, what new mythologies might Anderson's satellite-enabled, autonomous gather give rise to?

Our discussion ranged from robotic rats and sheep laterality to the advantages of GPS imprecision and the possibility of high-tech herds bred to suit the topography of particular property. The edited transcript appears below.

• • •

Nicola Twilley: I thought I'd start with a really basic question, which is why you would want to make a virtual fence rather than a physical one. After all, isn’t the role of fencing to make an intangible, human-determined boundary into a tangible one, with real, physical effects?


Pasture fence; photograph via Cheyenne Fence.

Dean M. Anderson: Let me put it this way, in really practical terms: When it comes to managing animals, every conventional fence that I have ever built has been in the wrong place the next year.

That said, I always kid people when I give a talk. I say, “Don't go out and sell your U.S. Steel stock—because we are still going to need conventional fencing along airport runways, interstates, railroad right-of-ways, and so on.” The reason why is because, when you talk about virtual fencing, you're talking about modifying animal behavior.

Then I always ask this question of the audience: “Is there anybody who will raise their hand, who is one hundred percent predictable, one hundred percent of the time?”

The thing about animal behavior is that it’s not one hundred percent predictable, one hundred percent of the time. We don’t know all of the integrated factors that go into making you turn left, when you leave the building, rather than right and so on. Once you realize that virtual fencing is capitalizing on modifying animal behavior, then you also realize that if there are any boundaries that, for safety or health reasons, absolutely cannot be breached, then virtual fencing is not the methodology of choice.

I always start with that disclaimer. Now, to get back to your question about why you’d want to make a virtual fence: On a worldwide basis, animal distribution remains a challenge, whether it’s elephants in Africa or Hereford cows in Las Cruces, New Mexico.


Photograph via Singing Bull Ranch, Colorado.

You will have seen this, although you may not have recognized exactly what you were looking at. For example, if you fly into Albuquerque or El Paso airports, you will come in quite low over rangeland. If you see a drinking water location, you will see that the area around that watering point looks as brown and devoid of vegetation as the top of this table, whereas, out at the far distance from the drinking water, there may be plants that have never seen a set of teeth, a jaw, or any utilization at all.

So you have the problem of non-uniform utilization of the landscape, with some places that are over utilized and other places that are underutilized. The over utilized locations with exposed soil are then vulnerable to erosion from wind and water, which then lead to all sorts of other challenges for those of us who want to be ecologically correct in our thinking and management actions.

Even as a college student, animal distribution was something that I was taught was challenging and that we didn't have an answer to. In fact, I recently wrote a review article that showed that, just in the last few years, we have used more than sixty-eight different strategies to try to affect distribution. These include putting a fence in, developing drinking water in a new location, putting supplemental feed in different locations, changing the times you put out feed, putting in artificial shade, so that animals would move to that location—there are a host of things that we have tried. And they all work under certain conditions. Some of them work even better when they’re used synergistically. There are a lot of combinations—whatever n factorial is for sixty-eight.


Cattle clustered under a neatly labeled portable shade structure; photograph via the University of Kentucky College of Agriculture.

But one thing that all of them basically don’t allow is management in real time. This is a challenge. Think of this landscape—the Chihuahuan desert, which, by the way, is the largest desert in North America. If you’ve been here during our monsoon, when we (sometimes) receive our mean annual nine-inches plus of precipitation, you’ll see that where Nicola is sitting, she can be soaking wet, while Geoff and I, just a few feet away, stay bone dry. Precipitation patterns in this environment can be like a knife cut.


Students learning rangeland analysis at the Chihuahuan Desert Rangeland Research Center; photograph by J. Victor Espinoza for NMSU Agricultural Communications.

You can see that, with conventional fencing, you might have your cows way over on the western perimeter of your land, while the rainfall takes place along the other edge. In two weeks, where that rain has fallen, we are going to have a flush of annuals coming up, which would provide high-quality nutrition. But, if you have the animals clear over three pastures away, then you’ve got to monitor the rainfall-related growth, and you’ve got to get labor to help round those animals up and move them over to this new location.

You can see how, many times as a manager, you might actually know what to do to optimize your utilization, but economics and time prevent it from happening. Which means your cows are all in the wrong place. It’s a lose-lose, rather than a win-win.


One of Dean Anderson's colleagues, Derek Bailey, herds cattle the old-fashioned way on NMSU's Chihuahuan Desert Rangeland Research Center. One aspect of Bailey's research is testing whether targeted grazing, made possible through Anderson's GPS collar technology, could reduce the incidence of catastrophic western wildfires. Photograph courtesy NMSU.

These annual plants will reach their peak of nutritional quality and decline without being utilized for feed. I’m not saying that seed production is not important, but basically, if part of this landscape’s call is to support animals, then you are not optimizing what you have available.

My concept of virtual fencing was basically to have that perimeter fence around your property be conventional, whether it’s barbed wire, stone, wood, or whatever. But, internally, you don't have fences. You basically program “electronic” polygons, if you will, based upon the current year’s pattern of rainfall, pattern of poisonous weed growth, pattern of endangered species growth, and whatever other variables will affect your current year’s management decisions. Then you can use the virtual polygon to either include or exclude animals from areas on the landscape that you want to manage with scalpel-like precision.

To go back to my first example, you could be driving your property in your air-conditioned truck and you notice a spot that received rain in the recent past and that has a flush of highly nutritious plants that would otherwise be lost. Well, you can get on your laptop, right then and there, and program the polygon that contains your cows to move spatially and temporally over the landscape to this “better location.” Instead of having to build a fence or take the time and manpower to gather your cows, you would simply move the virtual fence.



This video clip shows two cows (the red and green dots) in a virtual paddock that was programmed to move across the landscape at 1.1 m/hr, using Dean Anderson's directional virtual fencing technology.

It’s like those join-the-dots coloring books—you end up with a bunch of coordinates that you connect to build a fence. And you can move the polygon that the animals are in over in that far corner of the pasture. You simply migrate it over, amoeba-like, to fit in this new area.

You basically have real-time management, which is something that is not currently possible in livestock grazing, even with all of the technologies that we have. If you take that concept of being able to manage in real time and you tie it with those sixty-eight other things that have been found useful, you can start to see the benefit that is potentially possible.

Twilley: The other thing that I thought was curious, which I picked up on from your publications, is this idea that perhaps you might not be out on the land in your air-conditioned pickup, and instead you might actually be doing this through remote sensing. Is that possible?


Dean Anderson's NMSU colleague, remote sensing scientist Andrea Laliberte, accompanied by ARS technicians Amy Slaughter and Connie Maxwell, prepare to launch an unmanned aerial vehicle from a catapult at the Jornada Experimental Range. Photograph USDA/ARS.

Anderson: Definitely. Currently we have a very active program here on the Jornada Experimental Range in landscape ecology using unmanned aerial vehicle reconnaissance. I see this research as fitting hand-in-glove with virtual fencing. However—and this is very important—all of these whiz-bang technologies are potentially great, but in the hands of somebody who is basically lazy, which is all human beings, or even in the hands of somebody who just does not understand the plant-animal interface, they could create huge problems.

If you don’t have people out on the landscape who know the difference between overstocking and under-stocking, then I will want to change my last name in the latter years of my life, because I don't want to be associated with the train wreck—I mean a major train wreck—that could happen through using this technology. If you can be sitting in your office in Washington D.C. and you program cows to move on your ranch in Montana, and you don't have anybody out on the ground in Montana monitoring what is taking place …. [shakes head] You could literally destroy rangeland.

We know that electronics are not infallible. We also know that satellite imagery needs to be backed up by somebody on the ground who can say, “Wow, we've got a problem here, because what the electronic data are saying does not match what I’m seeing.”

This is the thing that scares me the most about this methodology. If people decouple the best computer that we have at this point, which is our brain, with sufficient experience, from knowing how to optimize this wonderful tool, then we will have a potential for disaster that will be horrid.


NMSU and USDA ARS scientists prepare to launch their vegetation surveying UAV from a catapult. Photograph USDA/ARS.

Twilley: One of the things I was imagining as I looked at your work was that, as we become an increasingly urban society, maybe farmers could still manage rural land remotely, from their new homes in the city.

Anderson: They can, but only if they also have someone on the ground who has the knowledge and experience to ground-truth the data—to look at it and say, “The data saying that this number of cows should be in this polygon for this many days are accurate”—or not.

You need that flexibility, and you always need to ground-truth. The only way you can get optimum results, in my opinion, is to have someone who is trained in the basics of range science and animal science, to know when the numbers are good and when the numbers are lousy. Electronics simply provide numbers.


Multispectral rangeland vegetation imagery produced by Andrea Laliberte's UAV surveys. Image from "Multispectral Remote Sensing from Unmanned Aircraft," by Andrea S. Laliberte, Mark A. Goforth, Caitriana M. Steele, and Albert Rango, 2011.

Now, you’re right, we are getting smarter at developing technology that can interpret those numbers. I work with colleagues in virtual fencing research who are basically trying to model what an animal does, so that they can actually predict where the animal is going to move before the animal actually moves. In my opinion if they ever figure that out, it’s going to be way past my lifetime.

Still, if you look at range science, it’s an art as well as science. I think it’s great that we have these technologies and I think we should use them. But we shouldn’t put our brain in a box on a table and say, “OK. We no longer need that.” Human judgment and expertise on the ground is still essential to making a methodology like this be a positive, rather than a negative, for landscape ecology.


Drawings from Anderson's patent #7753007 for an "Ear-a-round equipment platform for animals."

Manaugh: I'm curious about the bovine interface. How do you interface with the cow in order to stimulate the behavior that you want?

Anderson: I think that basically my whole career has been focused on trying to adopt innate animal behaviors to accomplish management goals in the most efficient and effective ways possible.

Here’s what I mean by that. I can guarantee that, if a sound that is unknown and unpleasant to the three of us happens over on that side of the room, we’re not going to go toward it. We’re going to get through that door on the other side as quickly as possible.

What I’m doing is taking something that’s innate across the animal world. If you stimulate an animal with something unknown, then, at least initially, it’s going to move away from it. If the event is also accompanied by an unpleasant ending experience and the sequence of events leading up to the unpleasant event are repeatable and predictable, after a few sequential experiences of these events, animals will try and avoid the ending event—if they’re given the opportunity. This is the principle that has allowed the USDA to receive a patent on this methodology.

The thing, first of all, about our technique is that it’s not a one size fits all. In other words, there are animals that you could basically look at cross-eyed and they’ll move, and then there are animals like me, where you’ve got to get a 2x6 and hit them up across the head to get their attention before anything happens.

When these kinds of systems have been built for dog training or dog containment in the past, they simply had a shock, or sometimes a sound first and then a shock. The stimulus wasn’t graded according to proximity or the animal’s personality.


Dean Anderson draws the route of a wandering cow approaching a virtual fence in order to show Venue how his DVF™ system works.

[stands up and draws on whiteboard] Let’s say that this is the polygon that we want the animal to stay in. If we are going to build a conventional fence, we would put a barbed wire fence or some enclosure around that polygon. In our system, we build a virtual belt, which in the diagrams is shaded from blue to red. The blue is a very innocuous sound, almost like a whisper. Moving closer to the edge of the polygon, into the red zone, I ramp that whisper up to the sound of a 747 at full throttle takeoff. I can have the sound all the way from very benign up to pretty irritating. At the top end, it’s as if a fire alarm went off in here—we’re going to get out, because it sounds terrible.



This video clip captures the first-time response of a cow instrumented with Dean Anderson's directional virtual fencing electronics when encountering a static virtual fence, established using GPS technology.

I’ve based the sounds and stimuli that I’ve used on what we know about cow hearing. Cows and humans are similar, but not identical. These cues were developed to fit the animal that we are trying to manage.

Now, if we go back to me as the example, I’m very stubborn. I need a little higher level of irritation to change my behavior. We chose to use electric stimulation.

I used myself as the test subject to develop the scale we’re using on this. My electronics guys were too smart. They wouldn't touch the electrodes. I’m just a dumb biologist, so…


Diagram showing how directional virtual fencing operates. The black-and-white dashed line (8) shows where a conventional fence would be placed. A magnetometer in the device worn on the cow’s head determines the animal’s angle of approach. A GPS system in the device detects when the animal wanders into the 200m-wide virtual boundary band. Algorithms then combine that data to determine which side of the animal's to cue, and at what intensity. From Dean M. Anderson's 2007 paper, "Virtual Fencing: Past, Present, and Future" (PDF).

If I’m the animal and I’m getting closer and closer to the edge of the polygon, then the electrodes that are in the device will send an electrical stimulation. In terms of what those stimulations felt like to me, the first level is about like hitting the crazy bone in your elbow. The next one is like scooting across this floor in your socks and touching a doorknob—that kind of static shock. The final one is like taking and stopping your gas-powered lawnmower by grabbing the spark plug barehanded.

What we did was cannibalize a Hot-Shot that some people buy and use to move animals down chutes. I touched the Hot-Shot output and I could still feel it in my fingertips the next morning, so we cut it right down for our version

As the cow moves toward the virtual fence perimeter, it goes from a very benign to a fairly irritating set of sensory cues, and if they’re all on at their highest intensity , it’s very irritating. It’s the 747s combined with the spark plug. Now, back from your eighth-grade geometry, you know that you have an acute angle and you have an obtuse angle. As the cow approaches a virtual fence boundary, we send the cues on the acute side, to direct her away from the boundary as quickly and with as little amount of irritation as possible. If we tried to move the cow by cuing the obtuse side, she would have had to move deeper into the irritation gradient before being able to exit it.

We don’t want to overstress the animal. So we end up, either in distance or time or both, having a point at which, if this animal decides it really wants what’s over here, it’s not going to be irritated to the point of going nuts. We have built-in, failsafe ways that, if the animal doesn’t respond appropriately, we are not going to do anything that would cause negative animal welfare issues.


Heart rate profile (beats per minute) of an 8-year-old free-ranging cross-bred beef cow before, during, and after an audio plus electric stimulation cue from a directional virtual fencing device. The cue was delivered at 0653 h. The second spike was not due to DVF cues; the cow was observed standing near drinking water during this time. From Dean M. Anderson's 2007 paper, "Virtual Fencing: Past, Present, and Future" (PDF).

The key is, if you can do the job with a tack hammer, don’t get a sledgehammer. This is part of animal welfare, which is absolutely the overarching umbrella under which directional virtual fencing was developed. There’s no need to stimulate an animal beyond what it needs. I can tell you that when I put heart rate monitors on cows wearing my DVF™ devices. I actually found more of a spike in their heart rates when a flock of birds flew over than when I applied the sound.

Now, there are going to be some animals that you either get your rifle and then put the product in your freezer, or you go put the animal back into a four-strand barbed wire fenced pasture. Not every animal on the face of the earth today would be controllable with virtual fencing. You could gradually increase the number of animals that do adapt well to being managed using virtual fencing in your herd through culling.

But the vast majority of animals will react to these irritations, at some level. They can choose at which point they react, all the way from the whisper to the lawnmower.


Diagram showing two cows responding differently to the virtual boundary: Cow 4132 (in green) penetrates the boundary zone more deeply, tolerating a greater degree of irritation before turning around. From Dean M. Anderson's 2007 paper, "Virtual Fencing: Past, Present, and Future" (PDF).

Here is the other thing: We all learn. Whatever we do to animals, we are teaching them something. It’s our choice as to what we want them to learn.

Of course, I don’t have data from a huge population that I can talk about. But, of the animals with whom I have worked—and the literature would support what I’m going to say—cows are, in fact smarter than human beings in a number of ways. If I give you the story of the first virtual fencing device that I built, I think you’ll see why I say that.

What our team did initially was cannibalize a kids’ remote control car to send a signal to the device worn by the animal. I had a Hereford/Angus cross cow, and she was a smart old girl. I started to cue her. I was close to her and she responded to the cues exactly the way I wanted her to. But she figured out, in less than five tries, that, if she kept twenty-five feet between me and her, I could press a button, and nothing would happen. I tried to follow her all over the field. She just kept that distance ahead of me for the rest of the trial—always more than twenty-five feet!

So that’s the reason why we are using GPS satellites to define the perimeter of the polygon. You can’t get away from that line.


A cow being fitted with an early prototype of Dean Anderson's Ear-A-Round DVF device. Photograph via USDA Jornada Experimental Range, AP.

What sets DVF™ apart from other virtual fencing approaches is that it’s not a one-size-fits-all. The cues are ramped, and the irritating cues are bilaterally applied, so we can make it directional, to steer the animals—no pun intended—over the landscape.

What’s interesting is that if you have the capacity to build a polygon, you can encompass a soil type, a vegetation situation, a poisonous plant, or whatever, much better than you can if you have to build a conventional fence. In building conventional fences, you have to have stretch posts every time you change the fence’s direction. That increases both materials and labor costs in construction, which is why you see many more rectangular paddocks than multi-sided polygons. Right now, you can assume that, on flat country, about fifty percent of the cost in a conventional fence is labor, and the other fifty percent is material.

Stretching barbed wire around a corner, shown in this engraving from A Treatise Upon Wire: Its Manufacture and Uses, Embracing Comprehensive Descriptions of the Constructions and Applications of Wire Ropes, J. Bucknall Smith, 1891.

Twilley: Which raises another question: Is virtual fencing cost-effective?

Anderson: It depends. I’ll give you an example to show what I mean. The US Forest Service over in Globe, Arizona, is interested in possibly using virtual fencing. Some of the mining companies over there have leases that say that before they extract the ore, and even after, the surface may be leased to people with livestock.

That country over there is pretty much like a bunch of Ws put together. In March 2012, for two-and-a-half miles of four-strand barbed wire, using T posts, they were given a quote of $63,000.

That's why they called me. [laughs]

Now, if that was next to a road, even if it cost $163,000 for those two-and-a half miles of fence, it would be essential, in my opinion, that they not think about virtual fencing—not in this day and time.

In twenty years from now—somewhere in this century, at least—after the ethical and moral issues have been worked out, instead of stimulating animals with external audio sound or electrical stimulation, I think we will actually be stimulating internally at the neuronal level. At that point, virtual fencing may approach one hundred percent effective control.


The DARPA "Robo Rat," whose movements could be directly controlled by three electrodes inserted into its brain; photograph via.

It's been done with rodents. The idea was that these animals could be equipped with a camera or other sensors and sent into earthquake areas or fires or where there were environmental issues that humans really shouldn’t be exposed to. Of course, even if it can be done scientifically, there are still issues in terms of animal welfare. What if there is a radiation leak? Do you send rodents into it? You can see the moral and ethical issues that need to be worked out.

Twilley: If that ever becomes a real-world application, will you sell your shares in U.S. Steel?

Anderson: [laughs] I have a feeling that we never will have a landscape devoid of visible boundaries. If nothing else, I want a barbed wire fence between Ted Turner’s ranch and our experimental ranch up the road here. With a visible boundary, there’s no question—this side is mine and that side is yours.


Fencing photograph via InformedFarmers.com. Incidentally, Ted Turner's Vermejo ranch in New Mexico and southern Colorado is said to be the largest privately-owned, contiguous tract of land in the United States.

Twilley: Aha—so it’s the human animals that will still need a physical fence.

Anderson: I think so. Otherwise you’re looking at the landscape and there’s absolutely nothing out there—whether it be to define ownership or use or even health or safety hazards.

Manaugh: Do you think this kind of virtual fencing would have any impact on real estate practices? For example, I could imagine multiple ranchers marbling their usage of a larger, shared plot of land with this ability to track and contain their herds so precisely. Could virtual fencing thus change the way land is controlled, owned, or leased amongst different groups of people?

Anderson: If you were to go down here to the Boot Heel area of New Mexico you could find exactly that: individual ranchers are pooling areas to form a grass bank for their common use.

Anything that I can do in my profession to encourage flexibility, I figure I’m doing the correct thing. That’s where this all came from. It never made sense to me that we use static tools to manage dynamic resources. You learn from day one in all of your ecology classes and animal science classes that you are dealing with multiple dynamic systems that you are trying to optimize in relationship to each other. It was a mental disconnect for me, as an undergraduate as well as a graduate student, to understand how you could effectively manage dynamic resources with a static fence.

Now, there are some interesting additional things you learn with this system. For example, believe it or not, animals have laterality. You probably didn’t see the article that I published last year on sheep laterality. [laughter]


USDA ARS scientists testing cattle laterality in a T-Maze. Photograph by Scott Bauer for the USDA ARS.

Twilley and Manaugh: No.

Anderson: Our white-faced sheep, which have Rambouillet and Polypay genetics, were basically right-handed. You’ll want to take a look at the data, of course, but, basically, animals are no different than you and I. There are animals that have a preference to turn right and others that have a preference to turn left.

Now, I didn’t do this study to waste government money. Think about it in terms of what I have told you about applying the cues bilaterally. If I know that my tendency is right-handed, then in order to get me to go left, I may need a higher level of stimulation on my right side than I would if you were trying to get me to go right by applying a stimulus on my left side, because it’s against my natural instincts.

With the computer technology we have today, everything we do can be stored in memory, so you can learn about each animal, and modify your stimulus accordingly. There is no reason at all that we cannot design the algorithms and gather data that, over time, will make the whole process optimized for each animal, as well as for the herd and the landscape.


Cow equipped with a collar-mounted GPS device; photography by Dave Ganskoop for the USDA ARS.

Twilley: Going back to something you said earlier about animal memory—and this may be too speculative a question to answer—I’m curious as to how dynamic virtual fencing affects how cows perceive the landscape.

Anderson: The question would be whether, if the virtual fence is on or near a particular rock, or a telephone pole, or a stream, and they have had electrical stimulation there before, do they associate that rock or whatever with a limit boundary? In other words, do they correlate visual landmarks with the virtual fence? Based on some non-published data I have collected, the answer is yes.

In fact, to give some context, there have been studies published showing that for a number of days following removal of an electric fence, cattle would still not cross the line where it had been located.

So this could indeed be an issue with virtual fencing, but—and my research on this topic is still very preliminary—I have not seen a problem yet, and I don’t think I will. Part of the reason is that cows want to eat, so if the polygon that contains the animals is programmed to move toward good forage, the cows will follow. It’s almost like a moving feed bunk, if you will. I'm sure that, in time—I would almost bet money on this—that if you were using the virtual fence to move animals toward better forage, you could almost eliminate the virtual fence line behind the animals, especially if the drinking water was kept near the “moving feed bunk.”

The other thing is that the consumer-level GPS receivers I have used in my DVF™ devices do not have the capability to have the fixes corrected using DGPS, which means that the fix may actually vary from the “true” boundary by as much as the length of a three-quarter ton pick-up. That’s to my benefit, because there is never an exact line where that animal is sure to be cued and hence the animal cannot match a particular stone or other environmental object with the stimulation event even if the virtual boundary is held static. It’s always going to be just in the general area.


A cow fitted with an early prototype of Anderson's Ear-A-Round DVF system at the Jornada Experimental Range; photograph via AP/Massachusetts Institute of Technology, Iuliu Vasilescu.

Manaugh: So imprecision is actually helpful to you.

Anderson: Yes, I believe so—although I don’t have enough data that I would want to stand on a podium and swear to that. But I think the variability in that GPS signal could be an advantage for virtual paddocks that spatially and temporally move over the landscape.

Twilley: We’ve talked about optimizing utilization and remote management, but are we missing some of the other ways that virtual fencing might transform the way we manage livestock or the land?

Anderson: Ideas that we know are good, but are simply too labor-intensive right now, will become reasonable. The big thing that has been in vogue for some time—and it still is, in certain places—is rotational stocking. The idea is that you take your land and divide it into many small paddocks and move animals through these paddocks, leaving the animals in any one paddock for only a few hours or days. It’s a great idea under certain situations, but think of the labor of building and maintaining all those fences, not to mention moving the animals in and out of different paddocks all the time.


A fence in need of repair; photograph via.

With the virtual paddock you can just program the polygon to move spatially and temporally over the landscape. Even the shape of the virtual paddock can be dynamic in time and space as well. It can be slowed down where there’s abundant forage, and sped up where forage is limited so you have a completely dynamic, flexible system in which to manage free-ranging animals.

Here’s another thing. Like anybody who gathers free-ranging animals, I have a song I use. My song is pretty benign and can be sung among mixed audiences. [sings] “Come on sweetheart, let’s go. Come on. Come on. Come on, girls. Let’s go.”



In this video clip, a cow-calf pair are moved using only voice cues (Dean Anderson's gathering song) delivered from directional virtual fencing (DVF™) electronics carried by the cows on an ear-a-round (EAR™) system.

That’s the way I talk to them, if I want them to move. One day when I was out manually gathering my cows on an ATV I put a voice-activated recorder in my pocket and recorded my song. We later transferred the sounds of my manual gathering into the DVF™ device. Then when we wanted to gather the animals we wirelessly activated the DVF™ electronics and my “song”—“Come on, girls, let’s go”—began to play. Instead of a negative irritation, this was a positive cuing—and it worked.

The cows moved to the corral based on the cue, without me actually being present to manually gather them—it was an autonomous gather.

I think this type of thing also points to a paradigm shift in how we manage livestock. Sure, I can get my animals up in the middle of night to move them, but why do that? Why not try to manage on cow time, rather than our own egotistical needs—“At eight o’clock, I want these cows in so I can brand them,” or whatever. Why not mesh management routines with their innate behaviors instead? For example, my song could maybe be matched to correspond to a general time of day when the animals might start drifting in to drink water, anyway.

Twilley: I see—it’s a feedback loop where you’re cuing behavior with the GPS collars, but you’re also gathering data. You can see where they are already heading and change your management accordingly.

Anderson: Absolutely. You are matching needs and possibilities.

Manaugh: To make this work, does every animal have to be instrumented?

Anderson: This is a very valid question, but my answer varies. All the research needed to answer this question is not in, and the answers depend on the specific situation being addressed. I have a lot of people right now who are calling me and asking for a commercial device that they can put on their animals because they are losing them to theft. With the price of livestock where it is currently, cattle-rustling is not a thing of the nineteenth century. It is going on as we speak.

If that’s your challenge, then you’re going to need some kind of electronic gadgetry on every animal for absolute bookkeeping. For me, the challenge is how do you manage a large, extensive landscape in ways that we can’t do now, and I don’t think we necessarily need to instrument every animal for virtual fencing to be effective.

Instead, if you’ve got a hundred cows, you need to ask: which of those cows should you put instruments on? As a producer, you probably have a pretty good idea which animals should be instrumented and why: you would look for the leaders in the group.


Position of two cows grazing similar pastures in Montana, recorded every ten minutes over a two-week period. The difference in their grazing patterns reveal one cow to be a hill climber and one to be a bottom dweller. Image form a USDA Rangeland Management publication (PDF) co-authored by Derek Bailey, NMSU.

What’s interesting is that there are cows that prefer foraging up on top of hills. There are others that prefer being down in a riparian area. A colleague of mine at New Mexico State University, calls them bottom dwelling and hill climbing cows and this spatial foraging characteristic apparently has heritability. So it’s possible that you could select animals that fit your specific landscape. If, as I mentioned earlier, the ease with which an animal can be controlled by sensory cues also has heritability, it seems logical to assume that you could create hightech designer animals tailored to your piece of land.

Now, when you start adding all of these things together, using these electronic gadgetries and really leveraging innate behaviors, it points to a revolution in animal management—a revolution with really powerful potential to help us become much better stewards of the landscape.


This photograph shows a worm fence, an American invention. It was the most widely built fence type in the US through the 1870s, until Americans ran out of readily accessible forests, triggering a "fence crisis," in which the costs of fencing exceeded the value of the land it enclosed. The "crisis" was averted by the invention of mass-produced woven wire in the late 1800s. Photograph from the USDA History Collection, Special Collections, National Agricultural Library.

Twilley: None of this is commercially available yet, though, right?

Anderson: That’s true—you cannot go out today and buy a commercial DVF™ system, or for that matter any kind of virtual fence unit designed specifically for livestock, to the best of my knowledge. But there is a company that is interested in our patent and they are trying to get something off the ground. I’m trying to feed this company any information that I can, though I am not legally allowed to participate in the development of their product as a federal employee.

Manaugh: What are some of the obstacles to commercial availability?

Anderson: The largest immediate challenge I see is answering the question of how you power electronics on free-ranging animals for extended periods of time. We have tried solar and it has potential. I think one of the most exciting things, though, is kinetic energy. I understand that there are companies working on a technology to be used in cellphones that will charge the cell phone simply by the action of lifting it out of your purse or pocket, and the Army has got several things going on now with backpacks for soldiers that recharge electronic communication equipment as a result of a soldier’s walking movement.


Lawrence Rome's kinetic backpack.

I don’t think the economics warrant animal agriculture developing any of these power technologies independently, but I think we can capitalize on that being developed in other, more lucrative industries and then simply adapt it for our needs. When I developed the concept of DVF™ I designed it to be a plug-and-pray device. As soon as somebody developed a better component, I would throw my thing out and plug theirs in—and pray that it would improve performance. Sometimes it did and sometimes it didn’t!

Manaugh: Have you looked into microbial batteries?

Anderson: That’s an interesting suggestion that I have not looked into. However, I have though a lot about capturing kinetic energy. If you watch a cow, their ears are always moving, and so are their tails. If we can capture any of that movement….

The other thing we need is demand from the market. In 2007, I was invited to the UK to discuss virtual fencing —the folks in London were more interested in virtual fencing than anybody else I have ever talked to in the world.

The reason was really interesting. England has a historic tradition of common land, which is basically open “green space” that surrounds the city and was originally used for grazing by people who had one or two sheep or cows. Nowadays, it’s mostly used by dog walkers, pony riders—for recreation, basically. The problem is that they need livestock back on these landscapes to actually utilize vegetation properly so certain herbaceous vegetation does not threaten some of the woody species. However, none of the present-day users want conventional fencing because of the gates that would have to be opened and shut to contain the animals. So they were interested in virtual fencing as a way to get the ecology back into line using domestic herbivores, in a landscape that needs to be shared with pony riders and dog walkers who don’t want to shut gates and might not do it reliably, anyway.

But it’s an interesting question. I’ve had some sleepless nights, up at two in the morning wondering, “Why is it not being embraced?” I think that a lot of it comes strictly down to economics.

I don’t know, at this point, what a setup would cost. But, in my opinion, there are ways we could implement this immediately and have it be very viable. You wouldn’t have every animal instrumented. You can have single-hop technology, so information uploads and downloads at certain points the animals come to with reliable periodicity—the drinking water or the mineral supplement, say. That’s not real-time, of course—but it’s near real-time. And it would be a quantum leap compared to how we currently manage livestock.


Barbed wire, patented by Illinois farmer Joseph Glidden in 1874, opened up the American prairie for large-scale farming. Photograph by Tiago Fioreze, Wikipedia.

Twilley: What do the farmers themselves think of this system?

Anderson: What I’ve heard from some ranchers is something along the lines of: “I've already got fences and they work fine. Why do I need this unproven new technology?”

On the other hand, dairy farmers who have automatic milking parlors, which allow animals to come in on their own volition to get milked, think virtual fencing would be very appropriate for their type of operation, for reasons of convenience rather than economics.


Robotic milking parlor; photograph via its manufacturer, DeLaval.

Now, let me tell you what I think might actually work. I think that environmentalists could actually be very beneficial in pushing this forward. Take a situation where you have an endangered bird species that uses the bank of a stream for nesting or reproduction. Under current conditions, the rancher can’t realistically afford to fence out a long corridor along a stream just for that two-week period. That’s a place where virtual fencing is a tool that would allow us to do the best ecological management in the most cost-effective way.

But the larger point is that we cannot afford to manage twenty-first century agriculture using grandpa’s tools, economically, sociologically, and biologically.


I.L. Elwood & Co. Glidden Steel Barb Wire, non-dated Advertising Posters, Advertising Ephemera Collection, Baker Library Historical Collections, via.

Some people have said, “Well, I think you are just ahead of your time with this stuff.” I’m not sure that’s true. In any case, in my personal opinion, if I’m not doing the research that looks twenty years out into future before it’s adopted, then I’m doing the wrong kind of research. In 2005, Gallagher, one of the world’s leading builders of electric fences, invited me to talk about virtual fencing. During that conversation, they told me that they believe that, by the middle of this century, virtual fencing will be the fencing of choice.

But here’s the thing: none of us have gone to the food counter and found it empty. When you have got a full stomach, the things that maybe should be looked at for that twenty-year gap are often not on the radar screen. As long as the barbed wire fences haven’t rusted out completely, the labor costs can be tolerated, and the environmental legislation hasn’t become mandatory, then why spend money? That’s human nature. You only do what you have to do and not much more.

The point is that it’s going to take a number of sociological and economic factors, in my opinion, for this methodology of animal control to be implemented by the market. But speaking technologically, we could go out with an acceptable product in eighteen months, I believe. It wouldn’t have multi-hop technology. It would equal the quality of the first automobile rather than being comparable to a Rolls Royce in terms of “extras”—that would have to await a later date in this century.

And here’s another idea: I think that there ought to be a tax on every virtual fencing device that is sold or every lease agreement that’s signed in the developed world. That tax would go to help developing countries manage their free-ranging livestock using this methodology because that’s where we need to be better stewards of the landscape and where we as a world would all benefit from transforming some of today’s manual labor into cognitive labor.


Herding cattle the old-fashioned way on the Jornada Experimental Range; photograph by Peggy Greb for USDA ARS.

Maybe with this technology, a third-world farmer could put a better thatched roof on his house or send his kids to school, because he doesn’t need their manual labor down on the farm. It’s fun for a while to be out on a horse watching the cows; what made the West and Hollywood famous were the cowboys singing to their cows. I love that; that’s why I’m in this profession. Still, I’m not a sociologist, but it seems as though you could take some of that labor that is currently used managing livestock in developing countries and all of the time it requires and you could transfer it into things that would enhance human well-being and education.

It’s in our own interest, too. If non-optimal livestock management is creating ecological sacrifice areas, where soil is lost when the rains come or the wind blows, that particulate matter doesn’t stop at national boundaries.

I always say that virtual fencing is going to be something that causes a paradigm shift in the way we think, rather than just being a new tool to keep doing things in the same old way. That’s the real opportunity.
 
  Getting more posts...