Filter: NW (wind)  view all
A landscape painting above Penny Boston's living room entryway depicts astronauts exploring Mars.

Penelope Boston is a speleo-biologist at New Mexico Tech, where she is Director of Cave and Karst Science. She graciously welcomed Venue to her home in Los Lunas, New Mexico, where we arrived with design futurist Stuart Candy in tow, en route to dropping him off at the Very Large Array later that same afternoon.

Boston's work involves studying subterranean ecosystems and their extremophile inhabitants here on Earth, in order to better imagine what sorts of environments and lifeforms we might encounter elsewhere in the Universe. She has worked with the NASA Innovative Advanced Concepts program (NIAC) to develop protocols for both human extraterrestrial cave habitation, and for subterranean life-detection missions on Mars, which she believes is highly likely to exist.

Over the course of the afternoon, Boston told Venue about her own experiences on Mars analog sites; she explained why she believes there is a strong possibility for life below the surface of the Red Planet, perhaps inside the planet's billion year-old networks of lava tubes; she described her astonishing (and terrifying) cave explorations here on Earth; and we touch on some mind-blowing ideas seemingly straight out of science fiction, including extreme forms of extraterrestrial life (such as dormant life on comets, thawed and reawakened with every passage close to the sun) and the extraordinary potential for developing new pharmaceuticals from cave microorganisms. The edited transcript of our conversation is below.

• • •

The Flashline Mars Arctic Research Station (FMARS) on Devon Island, courtesy the Mars Society.

Geoff Manaugh: As a graduate student, you co-founded the Mars Underground and then the Mars Society. You’re a past President of the Association of Mars Explorers, and you’re also now a member of the science team taking part in Mars Arctic 365, a new one-year Mars surface simulation mission set to start in summer 2014 on Devon Island. How does this long-term interest in Mars exploration tie into your Earth-based research in speleobiology and subterranean microbial ecosystems?

Penelope Boston: Even though I do study surface things that have a microbial component, like desert varnish and travertines and so forth, I really think that it’s the subsurface of Mars where the greatest chance of extant life, or even preservation of extinct life, would be found.

Nicola Twilley: Is it part of NASA’s strategy to go subsurface at any point, to explore caves on Mars or the moon?

Boston: Well, yes and no. The “Strategy” and the strategy are two different things.

The Mars Curiosity rover is a very capable chemistry and physics machine and I am, of course, dying to hear the details of the geochemistry it samples. A friend of mine, for instance, with whom I’m also a collaborator, is the principal investigator of the SAM instrument. Friends of mine are also on the CheMin instrument. So I have a vested interest, both professionally and personally, in the Curiosity mission.

On the other hand, you know: here we go again with yet another mission on the surface. It’s fascinating, and we still have a lot to learn there, but I hope I will live long enough to see us do subsurface missions on Mars and even on other bodies in the solar system.

Unfortunately, right now, we are sort of in limbo. The downturn in the global economy and our national economy has essentially kicked NASA in the head. It’s very unclear where we are going, at this point. This is having profound, negative effects on the Agency itself and everyone associated with it, including those of us who are external fundees and sort of circum-NASA.

On the other hand, although we don’t have a clear plan, we do have clear interests, and we have been pursuing preliminary studies. NASA has sponsored a number of studies on deep drilling, for example. One of the most famous was probably about 15 years ago, and it really kicked things off. That was up in Santa Fe, and we were looking at different methodologies for getting into the subsurface.

I have done a lot of work, some of which has been NASA-funded, on the whole issue of lava tubes—that is, caves associated with volcanism on the surface. Now, Glenn Cushing and Tim Titus at the USGS facility in Flagstaff have done quite a bit of serious work on the high-res images coming back from Mars, and they have identified lava tubes much more clearly than we ever did in our earlier work over the past decade.

Surface features created by lava tubes on Mars; image via ESA

Twilley: Are caves as common on Mars as they are on Earth? Is that the expectation?

Boston: I’d say that lava tubes are large, prominent, and liberally distributed everywhere on Mars. I would guess that there are probably more lava tubes on Mars than there are here on Earth—because here they get destroyed. We have such a geologically and hydro-dynamically active planet that the weathering rates here are enormous.

But on Mars we have a lot of factors that push in the other direction. I’d expect to find tubes of exceeding antiquity—I suspect that billions-of-year-old tubes are quite liberally sprinkled over the planet. That’s because the tectonic regime on Mars is quiescent. There is probably low-level tectonism—there are, undoubtedly, Marsquakes and things like that—but it’s not a rock’n’roll plate tectonics like ours, with continents galloping all over the place, and giant oceans opening up across the planet.

That means the forces that break down lava tubes are probably at least an order of magnitude or more—maybe two, maybe three—less likely to destroy lava tubes over geological time. You will have a lot of caves on Mars, and a lot of those caves will be very old.

Plus, remember that you also have .38 G. The intrinsic tensile strength of the lava itself, or whatever the bedrock is, is also going to allow those tubes to be much more resistant to the weaker gravity there.

Surface features of lava tubes on Mars; image via ESA

Manaugh: I’d imagine that, because the gravity is so much lower, the rocks might also behave differently, forming different types of arches, domes, and other formations underground. For instance, large spans and open spaces would be shaped according to different gravitational strains. Would that be a fair expectation?

Boston: Well, it’s harder to speculate on that because we don’t know what the exact composition of the lava is—which is why, someday, we would love to get a Mars sample-return mission, which is no longer on the books right now. [sighs] It’s been pushed off.

In fact, I just finished, for the seventh time in my career, working on a panel on that whole issue. This was the E2E—or End-to-End—group convened by Dave Beatty, who is head of the Mars Program at the Jet Propulsion Laboratory [PDF].

About a year ago, we finished doing some intensive international work with our European Space Agency partners on Mars sample-return—but now it’s all been pushed off again. The first one of those that I worked on was when I was an undergraduate, almost ready to graduate at Boulder, and that was 1979. It just keeps getting pushed off.

I’d say that we are very frustrated within the planetary and astrobiology communities. We can use all these wonderful instruments that we load onto vehicles like Curiosity and we can send them there. We can do all this fabulous orbital stuff. But, frankly speaking, as a person with at least one foot in Earth science, until you’ve got the stuff in your hands—actual physical samples returned from Mars—there is a lot you can’t do.

Looking down through a "skylight" on Mars; image via NASA/JPL/University of Arizona

Image via NASA/JPL/University of Arizona

Twilley: Could you talk a bit about your work with exoplanetary research, including what you’re looking for and how you might find it?

Boston: [laughs] The two big questions!

But, yes. We are working on a project at Socorro now to atmospherically characterize exoplanets. It’s called NESSI, the New Mexico Exoplanet Spectroscopic Survey Instrument. Our partner is Mark Swain, over at JPL. They are doing it using things like Kepler, and they have a new mission they’re proposing, called FINESSE. FINESSE will be a dedicated exoplanet atmospheric characterizer.

We are also trying to do that, in conjunction with them, but from a ground-based instrument, in order to make it more publicly accessible to students and even to amateur astronomers.

That reminds me—one of the other people you might be interested in talking to is a young woman named Lisa Messeri, who just recently finished her PhD in Anthropology at MIT. She’s at the University of Pennsylvania now. Her focus is on how scientists like me to think about other planets as other worlds, rather than as mere scientific targets—how we bring an abstract scientific goal into the familiar mental space where we also have recognizable concepts of landscape.

I’ve been obsessed with that my entire life: the concept of space, and the human scaling of these vastly scaled phenomena, is central, I think, to my emotional core, not just the intellectual core.

The Allan Hills Meteorite (ALH84001); courtesy of NASA.

Manaugh: While we’re on the topic of scale, I’m curious about the idea of astrobiological life inhabiting a radically, undetectably nonhuman scale. For example, one of the things you’ve written and lectured about is the incredible slowness it takes for some organisms to form, metabolize, and articulate themselves in the underground environments you study. Could there be forms of astrobiological life that exist on an unbelievably different timescale, whether it’s a billion-year hibernation cycle that we might discover at just the wrong time and mistake, say, for a mineral? Or might we find something on a very different spatial scale—for example, a species that is more like a network, like an aspen tree or a fungus?

Boston: You know, Paul Davies is very interested in this idea—the concept of a shadow biosphere. Of course, I had also thought about this question for many years, long before I read about Davies or before he gave it a name.

The conundrum you face is how you would know—how you would study or even conceptualize—these other biospheres? It’s outside of your normal spatial and temporal comfort zone, in which all of your training and experience has guided you to look, and inside of which all of your instruments are designed to function. If it’s outside all of that, how will you know it when you see it?

Imagine comets. With every perihelion passage, volatile gases escape. You are whipping around the solar system. Your body comes to life for that brief period of time only. Now apply that to icy bodies in very elliptical orbits in other solar systems, hosting life with very long periods of dormancy.

There are actually some wonderful early episodes of The Twilight Zone that tap into that theme, in a very poetic and literary way. [laughs] Of course, it’s also the central idea of some of the earliest science fiction; I suppose Gulliver’s Travels is probably the earliest exploration of that concept.

In the microbial realm—to stick with what we do know, and what we can study—we are already dealing with itsy-bitsy, teeny-weeny things that are devilishly difficult to understand. We have a lot of tools now that enable us to approach those, but, very regularly, we’ll see things in electron microscopy that we simply can’t identify and they are very clearly structured. And I don’t think that they are all artifacts of the preparation—things that get put there accidentally during prep.

A lot of the organisms that we actually grow, and with which we work, are clearly nanobacteria. I don’t know how familiar you are with that concept, but it has been extremely controversial. There are many artifacts out there that can mislead us, but we do regularly see organisms that are very small. So how small can they be—what’s the limit?

A few of the early attempts at figuring this out were just childish. That’s a mean thing to say, because a lot of my former mentors have written some of those papers, but they would say things like: “Well, we need to conduct X, Y, and Z metabolic pathways, so, of course, we need all this genetic machinery.” I mean, come on, you know that early cells weren’t like that! The early cells—who knows what they were or what they required?

To take the famous case of the ALH84001 meteorite: are all those little doobobs that you can see in the images actually critters? I don’t know. I think we’ll never know, at least until we go to Mars and bring back stuff.

I actually have relatively big microbes in my lab that regularly feature little knobs and bobs and little furry things, that I am actually convinced are probably either viruses or prions or something similar. I can’t get a virologist to tell me yes. They are used to looking at viruses that they can isolate in some fashion. I don’t know how to get these little knobby bobs off my guys for them to look at.

The Allan Hills Meteorite (ALH84001); courtesy of NASA.

Twilley: In your paper on the human utilization of subsurface extraterrestrial environments [PDF], you discuss the idea of a “Field Guide to Unknown Organisms,” and how to plan to find life when you don’t necessarily know what it looks like. What might go into such a guide?

Boston: The analogy I often use with graduate students when I teach astrobiology is that, in some ways, it’s as if we are scientists on a planet orbiting Alpha Centauri and we are trying to write a field guide to the birds of Earth. Where do you start? Well, you start with whatever template you have. Then you have to deeply analyze every feature of that template and ask whether each feature is really necessary and which are just a happenstance of what can occur.

I think there are fundamental principles. You can’t beat thermodynamics. The need for input and outgoing energy is critical. You have to be delicately poised, so that the chemistry is active enough to produce something that would be a life-like process, but not so active that it outstrips any ability to have cohesion, to actually keep the life process together. Water is great as a solvent for that. It’s probably not the only solvent, but it’s a good one. So you can look for water—but do you really need to look for water?

I think you have to pick apart the fundamental assumptions. I suspect that predation is a relatively universal process. I suspect that parasitism is a universal process. I think that, with the mathematical work being done on complex, evolving systems, you see all these emerging properties.

Now, with all of that said, the details—the sizes, the scale, the pace, getting back to what we were just talking about—I think there is huge variability in there.

Seven caves on Mars; images courtesy of NASA/JPL-Caltech/ASU/USGS.

Twilley: How do you train people to look for unrecognizable life?

Boston: I think everybody—all biologists—should take astrobiology. It would smack you on the side of the head and say, “You have to rethink some of these fundamental assumptions! You can’t just coast on them.”

The organisms that we study in the subsurface are so different from the microbes that we have on the surface. They don’t have any predators—so, ecologically, they don’t have to outgrow any predators—and they live in an environment where energy is exceedingly scarce. In that context, why would you bother having a metabolic rate that is as high as some of your compatriots on the surface? You can afford to just hang out for a really long time.

We have recently isolated a lot of strains from these fluid inclusions in the Naica caves—the one with those gigantic crystals. It’s pretty clear that these guys have been trapped in these bubbles between 10,000 and 15,000 years. We’ve got fluid inclusions in even older materials—in materials that are a few million years old, even, in a case we just got some dates for, as much as 40 million years.

Naica Caves, image from the official website. The caves are so hot that explorers have to wear special ice-jackets to survive.

There are a lot of caveats on this planet. One of the caveats is, of course, that when you go down some distance, the overlying lithostatic pressure of all of that rock makes space not possible. Microbes can’t live in zero space. Further, they have to have at least inter-grain spaces or microporosity—there has to be some kind of interconnectivity. If you have organisms completely trapped in tiny pockets, and they never interact, then that doesn’t constitute a biosphere. At some point, you also reach temperatures that are incompatible with life, because of the geothermal gradient. Where exactly that spot is, I don’t know, but I’m actually working on a lot of theoretical ideas to do with that.

In fact, I’m starting a book for MIT Press that will explore some of these ideas. They wanted me to write a book on the cool, weird, difficult, dangerous places I go to and the cool, weird, difficult bugs I find. That’s fine—I’m going to do that. But, really, what I want to do is put what we have been working on for the last thirty years into a theoretical context that doesn’t just apply to Earth but can apply broadly, not only to other planets in our solar system, but to one my other great passions, of course, which is exoplanets—planets outside the solar system.

One of the central questions that I want to explore further in my book, and that I have been writing and talking about a lot, is: what is the long-term geological persistence of organisms and geological materials? I think this is another long-term, evolutionary repository for living organisms—not just fossils—that we have not tapped into before. I think that life gets recycled over significant geological periods of time, even on Earth.

That’s a powerful concept, if we then apply it to somewhere like Mars, for example, because Mars does these obliquity swings. It has super-seasonal cycles, because it has these little dimple moons that don’t stabilize it, whereas our moon stabilizes the Earth’s obliquity level. That means that Mars is going through these super cold and dry periods of time, followed by periods of time where it’s probably more clement.

Now, clearly, if organisms can persist for tens of thousands of years—let alone hundreds of thousands of years, and possibly even millions of years—then maybe they are reawakenable. Maybe you have this very different biosphere.

Manaugh: It’s like a biosphere in waiting.

Boston: Yes—a biosphere in waiting, at a much lower level.

Recently, I have started writing a conceptual paper that really tries to explore those ideas. The genome that we see active on the surface of any planet might be of two types. If you have a planet like Earth, which is photosynthetically driven, you’re going to have a planet that is much more biological in terms of the total amount of biomass and the rates at which this can be produced. But that might not be the only way to run a biosphere.

You might also have a much more low-key biosphere that could actually be driven by geochemical and thermal energy from the inside of the planet. This was the model that we—myself, Chris McKay, and Michael Ivanoff, one of our colleagues from what was the Soviet Union at the time—published more than twenty years ago for Mars. We suggested that there would be chemically reduced gases coming from the interior of the planet.

That 1992 paper was what got us started on caves. I had never been in a wild cave in my life before. We were looking for a way to get into that subsurface space. The Department of Energy was supporting a few investigators, but they weren’t about to share their resources. Drilling is expensive. But caves are just there; you can go inside them.

So that’s really what got us into caving. It was at that point where I discovered caves are so variable and fascinating, and I really refocused my career on that for the last 20 years.

Lechuguilla Cave, photograph by Dave Bunnell.

Penelope Boston caving, image courtesy of V. Hildreth-Werker, from "Extraterrestrial Caves: Science, Habitat, Resources," NIAC Phase I Study Final Report, 2001.

The first time I did any serious caving was actually in Lechuguilla Cave. It was completely nuts to make that one’s first wild cave. We trained for about three hours, then we launched into a five-day expedition into Lechuguilla that nearly killed us! Chris McKay came out with a terrible infection. I had a blob of gypsum in my eye and an infection that swelled it shut. I twisted my ankle. I popped a rib. Larry Lemke had a massive migraine. We were not prepared for this. The people taking us in should have known better. But one of them is a USGS guide and a super caving jock, so it didn’t even occur to him—it didn’t occur to him that we were learning instantaneously to operate in a completely alien landscape with totally inadequate skills.

All I knew was that I was beaten to a pulp. I could almost not get across these chasms. I’m a short person. Everybody else was six feet tall. I felt like I was just hanging on long enough so I could get out and live. I've been in jams before, including in Antarctica, but that’s all I thought of the whole five days: I just have to live through this.

But, when I got out, I realized that what the other part of my brain had retained was everything I had seen. The bruises faded. My eye stopped being infected. In fact, I got the infection from looking up at the ceiling and having some of those gooey blobs drip down into my eye—but, I was like, “Oh my God. This is biological. I just know it is.” So it was a clue. And, when, I got out, I knew I had to learn how to do this. I wanted to get back in there.

ESA astronauts on a "cave spacewalk" during a 2011 training mission in the caves of Sardinia; image courtesy of the ESA.

Manaugh: You have spoken about the possibility of entire new types of caves that are not possible on Earth but might be present elsewhere. What are some of these other cave types you think might exist, and what sort of conditions would have formed them? You’ve used some great phrases to describe those processes—things like “volatile labyrinths” and “ice volcanism” that create speleo-landscapes that aren’t possible on Earth.

Boston: Well, in terms of ice, I’ll bet there are all sorts of Lake Vostok-like things out there on other moons and planets. The thing with Lake Vostok is that it’s not a lake. It’s a cave. It’s a cave in ice. The ice, in this case, acts as bedrock, so it’s not a “lake” at all. It’s a closed system.

Manaugh: It’s more like a blister: an enclosed space full of fluid.

Boston: Exactly. In terms of speculating on the kinds of caves that might exist elsewhere in the universe, we are actually working on a special issue for the Journal of Astrobiology right now, based on the extraterrestrial planetary caves meeting that we did last October. We brought people from all over the place. This is a collaboration between my Institute—the National Cave and Karst Research Institute in Carlsbad, where we have our headquarters—and the Lunar and Planetary Institute.

The meeting was an attempt to explore these ideas. Karl Mitchell from JPL, who I had not met previously, works on Titan; he’s on the Cassini Huygens mission. He thinks he is seeing karst-like features on Titan. Just imagine that! Hydrocarbon fluids producing karst-like features in water-ice bedrock—what could be more exotic than that?

That also shows that the planetary physics dominates in creating these environments. I used to think that the chemistry dominated. I don’t think so anymore. I think that the physics dominates. You have to step away from the chemistry at first and ask: what are the fundamental physics that govern the system? Then you can ask: what are the fundamental chemical potentials that govern the system that could produce life? It’s the same exercise with imagining what kind of caves you can get—and I have a lurid imagination.

From "Human Utilization of Subsurface Extraterrestrial Environments," P. J. Boston, R. D. Frederick, S. M. Welch, J. Werker, T. R. Meyer, B. Sprungman, V. Hildreth-Werker, S. L. Thompson, and D. L. Murphy, Gravitational and Space Biology Bulletin 16(2), June 2003.

One of the fun things I do in my astrobiology class every couple of years is the capstone project. The students break down into groups of four or five, hopefully well-mixed in terms of biologists, engineers, chemists, geologists, physicists, and other backgrounds. They have to design their own solar system, including the fundamental, broad-scale properties of its star. They have to invent a bunch of planets to go around it. And they have to inhabit at least one of those planets with some form of life. Then they have to design a mission—either telescopic or landed—that could study it. They work on this all semester, and they are so creative. It’s wonderful. There is so much value in imagining the biospheres of other planetary bodies.

You just have to think: “What are the governing equations that you have on this planet or in this system?” You look at the gravitational value of a particular body, its temperature regime, and the dominant geochemistry. Does it have an atmosphere? Is it tectonic? One of the very first papers I did—it appeared in one of these obscure NASA special publications, of which they print about 100 and nobody can ever find a copy—was called “Bubbles in the Rocks.” It was entirely devoted to speculation about the properties of natural and artificial caves as life-support structures. A few years later, I published a little encyclopedia article, expanding on it, and I’m now working on another expansion, actually.

I think that, either internally, externally, or both, planetary bodies that form cracks are great places to start. If you then have some sort of fluid—even episodically—within that system, then you have a whole new set of cave-forming processes. Then, if you have a material that can exist not only in a solid phase, but also as a liquid or, in some cases, even in a vapor phase on the same planetary body, then you have two more sets of potential cave-forming processes. You just pick it apart from those fundamentals, and keep building things up as you think about these other cave-forming systems and landscapes.

ESA astronauts practice "cakewalking"; image courtesy ESA-V. Corbu.

Manaugh: One of my favorite quotations of all time—and I'll probably get it wrong now that I’ve said that—is from a William S. Burroughs novel, where he describes what he calls “a vast mineral consciousness at absolute zero, thinking in slow formations of crystal.”

Boston: Oh, wow.

Manaugh: I mention that because I’m curious about how the search for “extraterrestrial life” always tends to be terrestrial, in the sense that it’s geological and it involves solid planetary formations. But what about the search for life on a gaseous planet—would life be utterly different there, chemically speaking, or would it simply be sort of dispersed, or even aerosolized? I suppose I’m also curious if there could be a “cave” on a gaseous planet and, if so, would it really just be a weather system? Is a “cave” on a gaseous planet actually a storm? Or, to put it more abstractly, can there be caves without geology?

Boston: Hmm. Yes, I think there could be. If it was enclosed or self-perpetuating.

Manaugh: Like a self-perpetuating thermal condition in the sky. It would be a sort of atmospheric “cave.”

Twilley: It would be a bubble.

ESA astronauts explore caves in Sardinia; image courtesy ESA–R. Bresnik.

Boston: In terms of life that could exist in a permanent, fluid medium that was gaseous—rather than a compressed fluid, like water—Carl Sagan and Edwin Salpeter made an attempt at that, back in 1975. In fact, I use their "Jovian Gasbags" paper as a foundational text in my astrobiology classes.

But an atmospheric system like Jupiter is dominated—just like an ocean is—by currents. It’s driven by thermal convection cells, which are the weather system, but it’s at a density that gives it more in common with our oceans than with our sky. And we are already familiar with the fact that our oceans, even though they are a big blob of water, are spatially organized into currents, and they are controlled by density, temperature, and salinity. The ocean has a massively complex three-dimensional structure; so, too, does the Jovian atmosphere. So a gas giant is really more like a gaseous ocean I think.

Now, the interior machinations that go on in inside a planet like Jupiter are driving these gas motions. There is a direct analogy here to the fact that, on our rocky terrestrial planet, which we think of as a solid Earth, the truth is that the mantle is plastic—in fact, the Earth’s lower crust is a very different substance from what we experience up here on this crusty, crunchy top, this thing that we consider solid geology. Whether we’re talking about a gas giant like Jupiter or the mantle of a rocky planet like Earth, we are really just dealing with different regimes of density—and, here again, it’s driven by the physics.

ESA astronauts set up an experimental wind-speed monitoring station in the caves of Sardinia; image courtesy ESA/V. Crobu.

A couple of years ago, I sat in on a tectonics class that one of my colleagues at New Mexico Tech was giving, which was a lot of fun for me Everybody else was thinking about Earth, and I was thinking about everything but Earth. For my little presentation in class, what I tried to do was think about analogies to things on icy bodies—to look at Europa, Titan, Enceledus, Ganymede, and so forth, and to see how they are being driven by the same tectonic processes, and even producing the same kind of brittle-to-ductile mantle transition, but in ice rather than rock.

I think that, as we go further and further in the direction of having to explain what we think is going on in exoplanets, it’s going to push some of the geophysics in that direction, as well. There is amazingly little out there. I was stunned, because I know a lot of planetary scientists who are thinking about this kind of stuff, but there is a big gulf between Earth geophysics and applying those lessons to exoplanets.

ESA astronauts prepare for their 2013 training mission in the caves of Sardinia; image courtesy ESA-V. Crobu.

Manaugh: We need classes in speculative geophysics.

Boston: Yeah—come on, geophysicists! [laughs] Why shouldn’t they get in the game? We’ve been doing it in astrobiology for a long time.

In fact, when I’ve asked my colleagues certain questions like, “Would we even get orogeny on a three Earth-mass planet?” They are like, “Um… We don’t know.” But you know what? I bet we have the equations to figure that out.

It starts with something as simple as that: in different or more extreme gravitational regimes, could you have mountains? Could you have caves? How could you calculate that? I don’t know the answer to that—but you have to ask it.

ESA astronauts take microbiological samples during a 2011 training mission in the caves of Sardinia; image courtesy of the ESA.

Twilley: You’re a member of NASA’s Planetary Protection Subcommittee. Could you talk a little about what that means. I’m curious whether the same sorts of planetary protection protocols we might use on other planets like Mars should also be applied to the Earth’s subsurface. How do we protect these deeper ecosystems? And how do we protect deeper ecosystems on Mars, if there are any?

Boston: That’s a great question. We are working extremely hard to do that, actually.

Planetary protection is the idea that we must protect Earth from off-world contaminants. And, of course, vice versa: we don’t want to contaminate other planets, both for scientific reasons and, at least in my case, for ethical reasons, with biological material from Earth.

In other words, I think we owe it to our fellow bodies in the solar system to give them a chance to prove their biogenicity or not, before humans start casually shedding our skin cells or transporting microbes there.

That’s planetary protection, and it works both ways.

One thing I have used as a sales pitch in some of my proposals is the idea that we are attempting to become more and more noninvasive in our cave exploration, which is very hard to do. For example, we have pushed all of our methods in the direction of using miniscule quantities of sample. Most Earth scientists can just go out and collect huge chunks of rock. Most biologists do that, too. You grow E. coli in the lab and you harvest tons of it. But I have to take just a couple grams of material—on a lucky day—sometimes even just milligrams of material, with very sparse bio density in there. I have to work with that.

What this means is that the work we are doing also lends itself really well to developing methods that would be useful on extraterrestrial missions.

In fact, we are pushing in the direction of not sampling at all, if we can. We are trying to see what we can learn about something before we even poke it. So, in our terrestrial caving work, we are actually living the planetary protection protocol.

We are also working in tremendously sensitive wilderness areas and we are often privileged enough to be the only people to get in there. We want to minimize the potential contamination.

That said, of course, we are contaminant sources. We risk changing the environment we’re trying to study. We struggle with this. I struggle with it physically and methodologically. I struggle with it ethically. You don’t want to screw up your science and inadvertently test your own skin bugs.

I’d say this is one of those cases where it’s not unacceptable to have a nonzero risk—to use a double negative again. There are few things in life that I would say that about. Even in our ridiculous risk-averse culture, we understand that for most things, there is a nonzero risk of basically anything. There is a nonzero risk that we’ll be hit by a meteorite now, before we are even done with this interview. But it’s pretty unlikely.

In this case, I think it’s completely unacceptable to run much of a risk at all.

That said, the truth is that pathogens co-evolve with their hosts. Pathogenesis is a very delicately poised ecological relationship, much more so than predation. If you are made out of the same biochemistry I’m made of, the chances are good that I can probably eat you, assuming that I have the capability of doing that. But the chances that I, as a pathogen, could infect you are miniscule. So there are different degrees of danger.

There is also the alien effect, which is well known in microbiology. That is that there is a certain dose of microbes that you typically need to get in order for them to take hold, because they are coming into an area where there’s not much ecological space. They either have to be highly pre-adapted for whatever the environment is that they land in, or they have to be sufficiently numerous so that, when they do get introduced, they can actually get a toehold.

We don’t really understand some of the fine points of how that occurs. Maybe it’s quorum sensing. Maybe it’s because organisms don’t really exist as single strains at the microbial level and they really have to be in consortia—in communities—to take care of all of the functions of the whole community.

We have a very skewed view of microbiology, because our knowledge comes from a medical and pathogenesis history, where we focus on single strains. But nobody lives like that. There are no organisms that do that. The complexity of the communal nature of microorganisms may be responsible for the alien effect.

So, given all of that, do I think that we are likely to be able to contaminate Mars? Honestly, no. On the surface, no. Do I act as if we can? Yes—absolutely, because the stakes are too high.

Now, do I think we could contaminate the subsurface? Yes. You are out of the high ultraviolet light and out of the ionizing radiation zone. You would be in an environment much more likely to have liquid water, and much more likely to be in a thermal regime that was compatible with Earth life.

So you also have to ask what part of Mars you are worried about contaminating.

ESA teams perform bacterial sampling and examine a freshwater supply; top photo courtesy ESA–V. Crobu; bottom courtesy ESA/T. Peake.

Manaugh: There’s been some interesting research into the possibility of developing new pharmaceuticals from these subterranean biospheres—or even developing new industrial materials, like new adhesives. I’d love to know more about your research into speleo-pharmacology or speleo-antibiotics—drugs developed from underground microbes.

Boston: It’s just waiting to be exploited. The reasons that it has not yet been done have nothing to do with science and nothing to do with the tremendous potential of these ecosystems, and everything to do with the bizarre and not very healthy economics of the global drug industry. In fact, I just heard that someone I know is leaving the pharmaceutical industry, because he can’t stand it anymore, and he’s actually going in the direction of astrobiology.

Really, there is a de-emphasis on drug discovery today and more of an emphasis on drug packaging. It is entirely profit-driven motive, which is distasteful, I think, and extremely sad. I see a real niche here for someone who doesn’t want to become just a cog in a giant pharmaceutical company, someone who wants to do a small start-up and actually do drug discovery in an environment that is astonishingly promising.

It’s not my bag; I don’t want to develop drugs. But I see our organisms producing antibiotics all the time. When we grow them in culture, I can see where some of them are oozing stuff—pink stuff and yellow stuff and clear stuff. And you can see it in nature. If you go to a lava tube cave, here in New Mexico, you see they are doing it all the time.

A lot of these chemistry tests screen for mutagenic activity, chemogenic activity, and all of the other things that are indications of cancer-fighting drugs and so on, and we have orders of magnitude more hits from cave stuff than we do from soils. So where is everybody looking? In soils. Dudes! I’ve got whole ecosystems in one pool that are different from an ecosystem in another pool that are less than a hundred feet apart in Lechuguilla Cave! The variability—the non-homogeneity of the subsurface—vastly exceeds the surface, because it’s not well mixed.

ESA astronauts prepare their experiments and gear for a 2013 CAVES ("Cooperative Adventure for Valuing and Exercising human behaviour and performance Skills") mission in Sardinia; image courtesy ESA–V. Crobu

Twilley: In your TED talk, you actually say that the biodiversity in caves on Earth may well exceed the entire terrestrial biosphere.

Boston: Oh, yes—certainly the subsurface. There is a heck of a lot of real estate down there, when you add all those rock-fracture surface areas up. And each one of these little pockets is going off on its own evolutionary track. So the total diversity scales with that. It’s astonishing to me that speleo-bioprospecting hasn’t taken off already. I keep writing about it, because I can’t believe that there aren’t twenty-somethings out there who don’t want to go work for big pharma, who are fascinated by this potential for human use.

There is a young faculty member at the University of New Mexico in Albuquerque, whose graduate student is one of our friends and cavers, and they are starting to look at some of these. I’m like, “Go for it! I can supply you with endless cultures.”

Twilley: In your “Human Mission to Inner Space” experiment, you trialed several possible Martian cave habitat technologies in a one-week mission to a closed cave with a poisonous atmosphere in Arizona. As part of that, you looked into Martian agriculture, and grew what you called “flat crops.” What were they?

Boston: We grew great duckweed and waterfern. We made duckweed cookies. Gus made a rice and duckweed dish. It was quite tasty. [laughs] We actually fed two mice on it exclusively for a trial period, but although duckweed has more protein than soybeans, there weren’t enough carbohydrates to sustain them calorically.

But the duckweed idea was really just to prove a point. A great deal of NASA’s agricultural research has been devoted to trying to grow things for astronauts to make them happier on the long, outbound trips—which is very important. It is a very alien environment and I think people underestimate that. People who have not been in really difficult field circumstances have no apparent understanding of the profound impact of habitat on the human psyche and our ability to perform. Those of us who have lived in mock Mars habitats, or who have gone into places like caves, or even just people who have traveled a lot, outside of their comfort zone, know that. Your circumstances affect you.

One of the things we designed, for example, was a way to illuminate an interior subsurface space by projecting a light through fluid systems—because you’d do two things. You’d get photosynthetic activity of these crops, but you’d also get a significant amount of very soothing light into the interior space.

We had such a fabulous time doing that project. We just ran with the idea of: what you can do to make the space that a planet has provided for you into actual, livable space.

From Boston's presentation report on the Human Utilization of Subsurface Extraterrestrial Environments, NIAC Phase II study (PDF).

Twilley: Earlier on our Venue travels, we actually drove through Hanksville, Utah, where many of the Mars analog environment studies are done.

Boston: I’ve actually done two crews there. It’s incredibly effective, considering how low-fidelity it is.

Twilley: What makes it so effective?

Boston: Simple things are the most critical. The fact that you have to don a spacesuit and the incredible cumbersomeness of that—how it restricts your physical space in everything from how you turn your head to how your visual field is limited. Turning your head doesn’t work anymore, because you just look inside your helmet; your whole body has to turn, and it can feel very claustrophobic.

Then there are the gloves, where you’ve got your astronaut gloves on and you’re trying to manipulate the external environment without your normal dexterity. And there’s the cumbersomeness and, really, the psychological burden of having to simulate going through an airlock cycle. It’s tremendously effective. Being constrained with the same group of people, it is surprisingly easy to buy into the simulation. It’s not as if you don’t know you’re not on Mars, but it doesn’t take much to make a convincing simulation if you get those details right.

The Mars Desert Research Station, Hanksville, Utah; image courtesy of bandgirl807/Wikipedia.

I guess that’s what was really surprising to me, the first time I did it: how little it took to be transform your human experience and to really cause you to rethink what you have to do. Because everything is a gigantic pain in the butt. Everything you know is wrong. Everything you think in advance that you can cope with fails in the field. It is a humbling experience, and an antidote to hubris. I would like to take every engineer I know that works on space stuff—

Twilley: —and put them in Hanksville! [laughter]

Boston: Yes—seriously! I have sort of done that, by taking these loafer-wearing engineers—most of whom are not outdoorsy people in any way, who haunt the halls of MIT and have absorbed the universe as a built environment—out to something as simple as the lava tubes. I could not believe how hard it was for them. Lava tubes are not exactly rigorous caving. Most of these are walk-in, with only a little bit of scrambling, but you would have thought we’d just landed on Mars. It was amazing for some of them, how totally urban they are and how little experience they have of coping with a natural space. I was amazed.

I actually took a journalist out to a lava tube one time. I think this lady had never left her house before! There’s a little bit of a rigorous walk over lava—but it was as if she had never walked on anything that was not flat before.

From Venue's own visit to a lava tube outside Flagstaff, AZ.

It’s just amazing what one’s human experience does. This is why I think engineers should be forced to go out into nature and see if the systems they are designing can actually work. It’s one of the best ways for them to challenge their assumptions, and even to change the types of questions they might be asking in the first place.

On the drive from Cape Canaveral to Miami, Venue stopped off in Fort Pierce to fortify ourselves with a gator tail sandwich, when we serendipitously happened across the National Navy UDT-SEAL Museum.

A full-scale model of the Apollo Space Capsule used by Underwater Demolition Team Frogmen to practice attaching a flotation device and rescuing the astronauts after splash down.

Members of the Underwater Demolition Team suffered from nitrogen narcosis often enough that they carried these cards "so as not to be mistaken for an intoxicated person."

After a quick tour through the eclectic collection of beach survey maps, underwater demolition equipment, "multi-purpose canine" memorabilia and the Maersk Alabama lifeboat in which Captain Phillips was held hostage, and even a surreal scale model of Osama bin Laden's Abbottabod compound (the model was "donated by CBS 60 Minutes"), we were ready to hit the road again—until we noticed the curious landscaping of the Museum's grassy exterior.

Against a backdrop of palm trees and suburban shrubbery, a row of rusted iron rails jutted out from the ground to form a forest of diagonal spikes, ringed by concrete pyramids, each set in a carefully maintained circle of white sand.

Signage explained that these were obstacles used for training by Frogmen during World War II, storming a simulated Omaha Beach on the white sand of Fort Pierce. From 1943 through 1945, a Seabee battalion built copies of German defenses and placed them in the water, for repeated waves of Frogmen to practice blowing up.

When the war was over, the remaining obstacles were abandoned until, in 1991, the Army Corps of Engineers finally pulled them out and donated the least deteriorated ones to the Navy SEAL Museum.

Like a brutalist sculpture garden, the closely mown lawn was peppered with an aggressive geometry of eroding concrete. On closer inspection, a taxonomy of obstacles emerged, starting with an advance guard of horned scullys—concrete blocks adorned with three or four iron spikes that would have been placed just offshore, in six to eight feet of water, in order to rip the bottom out of landing craft.

Cut rails and hedgehogs—clusters of iron beams riveted together and scattered across the beach like jacks—would have come next, followed by sinuous rows of dragonteeth, or concrete tetrahedrons, that could stop armored vehicles.

An American casualty lying next to an anti-landing craft obstruction on Omaha Beach, June 6, 1944. Photograph from the U.S. Coast Guard Collection in the U.S. National Archives.

Of course, the German analogs of these practice obstacles cost hundreds of Allied lives. But, placed in their perfect white sand circles and scattered with an artful randomness across a Floridian lawn, the overall effect is reminiscent of nothing so much as a Japanese Zen rock garden—a carefully constructed and meticulously tended landscape of both attack and defense, anticipation and memorial.

Zen rock garden, Fukuoka Prefecture, Japan; photo via.
The Hayward Fault runs through the center of the UC Berkeley campus, famously splitting the university's football stadium in half from end to end. It has, according to the 2008 Uniform California Earthquake Rupture Forecast, a thirty-one percent probability of rupturing in a magnitude 6.7 or greater earthquake within the next thirty years, making it the likeliest site for the next big California quake.

Nonetheless, for the majority of East Bay residents, the fault is out of sight and out of mind—for example, five out of six Californian homeowners have no earthquake insurance.

The Hayward Fault trace superimposed onto a map of the University of California, Berkeley, campus, as seen in the USGS Hayward Fault Virtual Tour.

Meanwhile, three-quarters of a mile north of Memorial Stadium, and just a few hundred yards west of the fault trace, is the office of Ken Goldberg, Professor of Industrial Engineering and Operations Research at Berkeley.

Goldberg's extensive list of current projects includes an NIH-funded research initiative into 3D motion planning to help steer flexible needles through soft tissue and the African Robotics Network, which he launched in 2012 with a Ten-Dollar Robot design challenge.

Three robots from the "10 Dollar Robot" Design Challenge organized by the African Robotics Network.

Alongside developing new algorithms for robotic automation and robot-human collaboration, Goldberg is also a practicing artist whose most recent work, Bloom, is "an Internet-based earthwork" that aims to make the low-level, day-to-day shifts and grumbles of the Hayward Fault visible as a dynamic, aesthetic force.

Screenshot of Bloom, 2013, by Ken Goldberg, Sanjay Krishnan, Fernanda Viégas, and Martin Wattenberg.

Venue stopped by Goldberg's office to speak with him about Bloom and the challenge of translating invisible seismic forces into immersive artworks.

Our conversation ranged from color-field art and improvisational ballet to the Internet's value as a vehicle for re-imagining the relationship between sensing and physical reality. The edited transcript appears below.

• • •

A Bay Area seismograph. Photograph by Marcin Wichary.

Nicola Twilley: When did you start working with seismic readings in an artistic context, and why?

Ken Goldberg: Well, I had just finished grad school, I had started teaching at USC in the Computer Science department, and I was doing art installations on the side. And I was building robots.

I had just completed an installation for the university museum when I stumbled onto this, at the time, brand new thing called the World Wide Web. My students showed me this thing and I realized: this is the answer! The Web meant that I didn’t have to schlep a whole bunch of stuff to a museum and fight with all their constraints and make something that, in the end, only 150 people would actually get out to see. Instead, I could put something together in my lab and make it accessible to the world. That’s why we—I worked with a team—started developing web-based installations.

The Telegarden, 1995-2004, networked art installation at Ars Electronica Museum, Austria. Co-directors: Ken Goldberg and Joseph Santarromana Project team: George Bekey, Steven Gentner, Rosemary Morris Carl Sutter, Jeff Wiegley, Erich Berger. Photo by Robert Wedemeyer.

We actually built the first robot on the Internet, as an art installation. It got a lot of attention—tens of thousands of people were coming to that. Then we did a second version called The Telegarden, which is still the project I’m probably best known for. It was a garden that anyone online could plant and water and tend, using an industrial robotic arm, and it was online for nine years. I actually just found out that there’s a band called Robots in the Garden, which is exciting.

What was really interesting to me about The Telegarden was this idea of connecting the physical world, the natural world, and the social world through the Internet. I was interested in the questions that come up when the Internet gives you access not just to JSTOR libraries and to digital information, but also to things that are live and dynamic and organic in some way.

That really drove my thinking, and my colleagues and I began to do a lot of research in that area. I registered some patents and won a couple of National Science Foundation awards, formed something called the Technical Committee on Networked Robots, and wrote a lot of papers. From the research side of it, there are a lot of interesting questions, but, from the art side, it also led to a series of projects that look at how such systems were being perceived, and how they were shaping perception.

I worked with Hubert Dreyfus on a philosophical issue that we call “telepistemology,” which is the question of: what is knowledge? What counts as objective distance? In other words, people were interacting with this garden remotely, and that raised the question of whether or not, and how, the garden was real, which is the fundamental question of epistemology.

The Telegarden, 1995-2004, networked art installation at Ars Electronica Museum, Austria. Co-directors: Ken Goldberg and Joseph Santarromana Project team: George Bekey, Steven Gentner, Rosemary Morris Carl Sutter, Jeff Wiegley, Erich Berger. Photo by Robert Wedemeyer.

Epistemology has always been affected by technologies like the telescope and the microscope, things that have created a radical shift in how we sense physical reality. As we started thinking about this more, we became interested in how the Internet is causing an analogous shift, in terms of, hopefully, reinvigorating skepticism about what is real and what is an artifact of the viewing process. I edited a book on this for MIT Press that came out in 2000.

In the middle of all that, then, I moved here and met someone from the seismology group. They agreed to give me access to this live data feed of movements on the Hayward Fault, a tectonic fault that cuts right through the center of Berkeley—in fact, right through the middle of campus, not far from here. I was really interested in this idea of connecting to something that was not just the contained environment of a garden, but something much more dynamic and naturally rooted and global.

I guess I should add, as well, that a big factor for me was when I moved up here and became intrigued by the total amnesia and denial that people here have about their seismic situation. I would ask people, “What do you have in your earthquake kit?” And they would reply, “What? What are you talking about?” Now, of course, twenty years later, I don’t have an earthquake kit, either. [laughs]

Manaugh: I think that’s quite a common scenario. When we first moved out to California, we bought several gallons of water, a few boxes of Clif Bars, extra flashlights, and even earthquake insurance, and the native Californians I knew here just looked at us like we were paranoid survivalists, hoarding ammunition for Doomsday.

Goldberg: It was that sort of reaction that got me thinking a lot about how people are not conscious of the fault, or about earthquakes, in general, and I began wondering how you could make that more visually present. Also, the old seismograph was an interesting visual metaphor for me. Everyone recognized that form, but I wanted to play with it. I thought we could make a live, web-based version, which you can actually still see online.

Twilley: What form did that take?

Goldberg: The very first version was just a simple trace across a black screen. It was called Memento Mori and it was meant to be super-minimalist. In fact, when I showed it to the seismologists, they said, “Oh, where’s the grid? How can we quantify this without a scale?” I had to say, no, no, it’s not about that. We’re just showing a sense of this—a visible signal. We actually wanted people to make an analogy with a heart monitor.

Screenshots from Memento Mori, 1997-ongoing, Internet-based earthwork, Ken Goldberg in collaboration with Woj Matuskik and David Nachum.

What’s also interesting is that the trace mutates quite a bit. You come in at different times of the day and the signal is very different. It’s sort of like the weather. The fault has different moods. When there is an earthquake, people will see big swings of activity with rings, because it goes on for days and days afterward. In fact, when there’s a big earthquake in Turkey, you can pick it up here. It strikes the earth and then a signal comes around at the speed of sound, and then it goes all the way around again, and you get these echoes for weeks. Very small echoes can go on for months. And, every time there is a tremor, we get a huge spike in traffic.

I also liked the idea of making a long form artwork, like Walter De Maria’s Earth Room, online.

The New York Earth Room, 1977, Walter De Maria. Long-term installation at 141 Wooster Street, New York City. Photograph via.

Manaugh: Like a seismic Long-Player?

Goldberg: Exactly.

Part of this, I think, is that as an engineer, I’m really intrigued by the challenge of how you make the system stay on. A lot of times we have robotic projects, but they work once or twice, and then that’s it. I feel like that’s deceiving, because people may see them, or watch a video, and then they take away a certain sense of what robotics is. You have to be careful, because it sets false expectations. The kind of robotics in which you really build a system that can stay online and also take the kind of abuse that happens over the Internet is quite a challenge. I’m very big on this issue of reliability and robustness.

In any case, we put the Memento Mori system online and, after a year or two, Randall Packer, a composer here, approached me and said, “What about adding an auditory component?”

The actual signal frequency is too low—it’s inaudible. If you just attach a speaker to it, nothing comes out. What you want to do is use it to trigger sounds, so that, essentially, the signal becomes like a conductor’s baton, triggering this orchestra of sounds. Through that process of sonification, you can create a very auditory experience that’s still driven by the seismic signal.

Twilley: So you could be using the signal to trigger a laugh track if you wanted to?

Goldberg: Exactly—the sounds don’t have to be notes. Packer did it with a lot of natural sounds, like waterfalls and lightning and thunder—things like that—so it was very earthly. But by no means does it have to be musical. In fact, that’s where we are now with Bloom, which is my most recent project.

We renamed the new auditory version Mori. We got a commission to do a project in Tokyo, at the ICC. They actually gave us a good amount of funding, so we ramped up and built this whole seismic installation with an acoustic chamber that was about fifteen feet square and had extremely powerful subwoofers underneath the plywood floor. The whole idea was that you could walk in and you could lie on the floor. We amplified the signal a lot, and there was this real sense of immersion, like you were essentially inside the earth. What was important is that it was live. Obviously, you could do this prerecorded, but it was essential to us that this signal was coming directly from the earth in real-time.

Mori Seismic Installation, 1999-ongoing, Ken Goldberg, Randall Packer, Gregory Kuhn, and Wojciech Matusik. Photo taken at the Kitchen, New York City, April 2003, by Jared Charney.

That was started in 1999, and, as it traveled around Japan and then to the The Kitchen in New York, we got closer and closer to the one-hundredth anniversary of the 1906 earthquake. I got this idea that I wanted to do a performative version. I wanted to do it in a very big space where everybody could experience it together at the time of the one-hundredth anniversary.

About a year before the anniversary, by chance, I was seated at a table next to a dancer—actually, the dancer—from the ballet. She was the principal dancer at the San Francisco Ballet—Muriel Maffre. After a couple of drinks, I got the courage up to ask her, “Would you ever consider dancing to the sound of the earth?” Amazingly, she said yes.

So Muriel, who is just an astounding artist and performer, took this on as a project. The idea was quite radical—that she would take a live seismic signal and respond to it on stage. And it’s improv, because you don't know what’s going to happen. We worked together for about a year, and we convinced the ballet to actually perform it in the opera house. It was about a week before the actual anniversary, in the end. She performed it on stage and it was about three minutes long. She did a phenomenal job. It was just a beautiful thing.

Muriel Maffre performing Ballet Mori, image via Ken Goldberg.

Twilley: How did you connect the signal to her, on stage?

Goldberg: We connected to the signal via the Internet, and we did the sonification right there on site, feeding it into their speaker system. She was just responding to the sound on stage.

What’s so interesting about how the ballet works is that they do all these rehearsals and, then, when they actually set up for the performance, it all has to be done that same afternoon. There’s no advance set up, because the space is in so much demand. You only have a few hours to get the whole thing tuned.

In this case, we were really cranking it—telling them to just turn up the volume. It was amazing to watch this old opera house, which actually was destroyed in the 1906 earthquake and then rebuilt, start to vibrate. That was actually a big concern—were light fittings and so on going to fall?

Ruins of City Hall and the Majestic Theater in San Francisco, following the 1906 earthquake.

Manaugh: That reminds me of the artist Mark Bain, who actually got permission to install a massive acoustic set-up in a condemned building in the Netherlands; it got so loud, and the bass frequencies he was using were so extreme, that the building risked collapse—which, of course, was the entire point of Bain’s performance—but the organizers had to shut it down.

Goldberg: The facilities guys actually said to me, “We don’t want to drop the chandelier on people’s heads! What if there’s a spike in the earth’s motion that would cause the sound levels to blow up?” I don’t know if that’s even feasible, but we put a clip on it so, if there was a sudden event, the system wouldn’t be overwhelmed.

From there, I went on to do a limited series of the original Memento Mori piece that collectors could purchase. There was an artist’s edition that would always be publicly available, but people who bought their own edition got their own version that they could label, and that included some private data. But, in the course of developing that, I started thinking, why does it have to be so grim? When I originally conceived it, I was really into the minimalist aesthetic. It was just black and white and about mortality. But I started thinking: why? It started seeming very dark.

So I started thinking about what else this signal could be used to generate, something that would be more visually stimulating and more engaging. That’s what gave rise to my new project, Bloom. Bloom is meant, in some sense, to invoke something that’s more natural and organic. It still references mortality, but in a much more positive way. Maybe it’s because I’m getting a little older or something like that!

Screenshot of Bloom, 2013, by Ken Goldberg, Sanjay Krishnan, Fernanda Viégas, and Martin Wattenberg.

Bloom is basically the idea that all flesh is grass, and that we can look at natural plant growth and organic material as outgrowths of the Earth. The seismic signal is a representation and reminder of this organic substrate, so I thought: let’s use it to trigger the growth of forms. I’m just going to play it for you. [launches beta version of Bloom]

Manaugh: What are we actually seeing right now? What scale of seismic activity do these blooms represent?

Goldberg: What you’re seeing right now is just normal variation. For example, when a big truck goes up Hearst Avenue, which is not far from the seismometer, there’s a signal from that. And then, at any given time, there are actually lots of tremors going on around the world, so you’re picking up all the echoes of those. It’s actually really rich to try to do signal-processing in order to extract signals from the noise, because there are also resonant elements from, for example, the beating of the surf on the California coast.

There’s actually a huge amount of information coming through here. What’s interesting is that this display is so different to what earth scientists are used to looking at. They study plots and seismographs, and so on. We’re actually going to have a meeting with them to talk about their perceptions of this and how they respond to it. My sense is that they probably won’t find it that valuable, because there’s no real scientific benefit to it—although it would be interesting to see if someone who really understands the signal could look at this thing for a while and actually start to read it.

For us, it’s really more of an abstraction.

A sequence of screenshots of Bloom, 2013, by Ken Goldberg, Sanjay Krishnan, Fernanda Viégas, and Martin Wattenberg.

Twilley: Can you explain how the blooms’ particular colors and forms are generated?

Goldberg: The blooms are triggered from left to right, so there’s still this idea of temporal progression, and they are triggered depending on whether the signal is switching. The relative size of each bloom is generated by the size of the signal change. The color choices come from a feed from Flickr—a search for flower images to pull up a data set that we can use to source the color variations.

I’m working with these two wonderful data visualization folks, Martin Wattenberg and Fernanda Viégas. They are amazing: Martin has a Math PhD from Berkeley and went off to work at IBM. He’s done a huge number of these visualizations for data of all kinds—most famously, for baby name data. All of his interfaces are just fantastic and we’ve been friends for a long time. He then started working with someone I knew from MIT, Fernanda, who is a painter by training. The two of them started to do all these amazing projects with IBM, and they had their own lab, which they eventually took private. Then they got bought by Google, but Google seems to give them pretty free rein to do whatever they want. We started working on this about a year ago.

Mysteries: Afloat, 2000, Kenneth Noland.

I should also explain the reference to Kenneth Noland. I’ll confess to you—I didn’t really know his work when I began this project. I gave a talk to some art historians, and they said, “Oh, it’s so nice that you’re referencing Kenneth Noland in this way!” I was like, “Who?” They were a little horrified. [laughter]

Noland was a New York color-field painter, whose work is a lot like what we had started generating with Bloom—so I dedicated the project to him. We wanted to play with that reference. What’s amazing is that he passed away just a year ago.

Screenshot of Bloom, 2013, by Ken Goldberg, Sanjay Krishnan, Fernanda Viégas, and Martin Wattenberg.

In any case, we’re still fine-tuning things, including the fades and the way that the colors are derived from the data and how it’s going to be installed in the gallery and so on. The experience in the museum is always more immersive and hopefully more dramatic than it is online. The ideal situation for me is that you would come in on a kind of balcony and you could look down twenty or thirty feet and see all of the colors blooming there below you.

Bloom installed at the Nevada Museum of Art

Bloom is currently on display at the Nevada Museum of Art, Venue’s parent institution, through June 16, 2013.

Dennis Scholl is a former accountant and sometime casino card-counter turned Emmy-award winning documentary producer, as well as a boutique winemaker who now distils artisanal mescal in Oaxaca. He is also currently Vice President of Arts for the Knight Foundation, where his initiatives include “Random Acts of Culture,” a program that surprises passers-by with pop-up opera and ballet performances in unexpected spaces.

As someone who went to his first museum at the age of 22 and became an art collector six months later, Scholl is passionate about the ways in which arts and culture enrich our lives and communities, but he is equally committed to inserting them into the fabric of cities—bringing the arts to people where they are, rather than requiring people to come to arts.

His focus on the value of shared, transformative cultural experiences fits with the Knight Foundation’s own research findings on the most important reasons why people become attached to a particular city, in which social opportunities, aesthetics, and a sense of openness and inclusivity frequently rank above jobs, demographics, or amenities.

Venue caught up with Scholl at the end of the 2012 Aspen Ideas Festival to talk about the art world equivalent of farm shares and veg boxes, the hits, misses, and future of the “Random Acts of Culture” program, and the importance of field trips. The edited transcript of our conversation is below.

• • •

Nicola Twilley: You’re were invited here to the Aspen Ideas Festival to speak on a panel called “Making Cities Sing.” What does a singing city look—or, I suppose I should say, sound—like for you?

Dennis Scholl: I was joined on the panel by Rocco Landesman, the chairman for the National Endowment for the Arts, and Darren Walker, who is the head of culture for Ford Foundation. The moderator was Richard Florida, who wrote The Rise of the Creative Class, and the question that he put to us is, “How do you make a city sing?” Not sing in the literal sense, but rather, “How do you make a city have a kind of vibration where it’s in harmony and people are feeling good about it?”

Of course, all the panelists come from a cultural background, so we spent a lot of time talking about what we’ve each done in culture to try to create that particular environment in a city—to try to create engagement amongst citizens in communities.

For my part, I talked about one of the programs I started at the Knight Foundation, called “Random Acts of Culture.” “Random Acts of Culture” takes opera singers and puts them in the farmers’ market. It takes ballet dancers and puts them in the airport. And sometimes we take a 650-member choir and put them in Macy’s in the Wanamaker Building with a 20,000-pipe organ and get them to perform the “Hallelujah” chorus.

It’s all spontaneous to the public. It’s obviously very thought-through in terms of our behind-the-scenes organization, but the idea is to have a surprise performance in a very surprising place. Our goal is to reconnect people to the classics—so in one sense, we’re quite traditional. The performers are all professional artists and we pay every artist for every performance. But we feel that the model of an 8pm start at the Symphony Hall on a Saturday, where you either come or you don’t, just doesn’t fit today’s lifestyle that well. People’s attention spans, their free time, and their constant digital engagement all make our lives so much more fragmented.

So we decided to try to take the symphony out of the symphony hall and put it into the streets—and the response has been incredible. We have well over ten million YouTube views for the “Random Acts of Culture” that we’ve filmed so far. There have been many, many copycats, which we love, and if you include the YouTube views for those, the total is well over fifty million online views of spontaneous cultural, classical performances in very interesting places. Now we’re turning it into a documentary, too—I was actually up very late last night looking at a rough cut of a film we’re making about the program.

Twilley: How did “Random Acts of Culture” originally come about?

Scholl: Somebody sent me a video from Valencia, Spain. I clicked on it, and it was in one of those big, open marketplaces. There was a guy selling a piece of ham to somebody. I was very close to clicking it off. But, suddenly, he bursts out into song, singing opera. So I keep watching. Then he steps out from behind the counter, and across the counter from him is a woman selling something—coffee beans, I think. She begins to sing, and she comes out from behind her counter. They’re doing this beautiful duet and a crowd begins to gather. Suddenly more people step out of the crowd and begin to sing. And it goes on and on and on, and at the end of it, the crowd goes wild, people are bawling—crying is a very common occurrence when it comes to “Random Acts of Culture,” in person or on the web. At the very end, holds up a sign, in Spanish, that says, “So you think you don’t like opera, huh?”

I was just so taken by it. I wondered what would happen if we did it over and over and over again with lots and lots of disciplines in very unique places. We did one in Miami, where Knight is based, and the audience response was immediate and electric. So we went to our Knight Foundation Board of Trustees and told them that we’d like to do one thousand “Random Acts of Culture.” Now, that was a mistake, because I could have told them that I wanted to do one hundred “Random Acts of Culture” and they would have been just as happy! But I’m a “go big or go home” kind of guy, and once we committed, we had to deliver. Yesterday, we completed Random Act #943. [As of February 1, 2013, 1244 “Random Acts of Culture” have been completed.]

Twilley: That’s exciting—you’re nearly there.

Scholl: We’re in the home stretch. I believe we’ll be done by the end of the year. It’s been a wonderful project. We’ve gotten thousands of emails, and most of them begin with, “I’m sobbing as I type this.” It’s just been a joy.

We’ve now done them in eight different cities across America—the cities where the Knight brothers used to own a newspaper—as well as a few other places, like yesterday’s performance here at the Aspen Ideas Festival. I think we’ve really created a sense of community, and we’ve put a lot of artists to work in a way that has been profound for them, too. There’s normally this big separation between the people in the seats and the people up on the stage, and auditoriums have big lights so the performers can’t even see the audience for the most part, so for them to stand this close to somebody and sing opera is a trip.

Geoff Manaugh: What types of performances have you done so far? Is it only opera?

Scholl: We’ve done opera, we’ve done flamenco, we’ve done ballet, we’ve done gospel, we’ve done jazz, we’ve done classical—we’ve done all sorts of things. For the two performances here at Aspen, there were two unusual Chinese instruments played by Wu Tong, a Classical Chinese performer who is here this week. He played the sheng, which is almost like a panpipe. They’d probably kill me for saying that! [laughter] Then he played the bawu. I can’t even describe what that’s like. You’ve just got to see it. It looked like he was playing an octopus, basically; it’s a very unusual instrument. I’d never seen anything like it before. The crowd went crazy—there were 2000 people in the music tent, and they just went nuts.

Manaugh: Is there any particular place—or even a particular art form—that you’d like to use for a future “Random Act of Culture” but you haven’t quite figured out yet how to make it work?

Scholl: The biggest problem we’ve had so far is doing something within the visual arts. We’ve gotten a couple of good ideas, but we haven’t quite been able to crack the code there. In comparison, the performing arts are so immediate. However, we do have one good idea we’re working on from an artist in Miami who came to me and asked about it, so we might crack that one.

As for locations, we’d very much like to do something classical at a sporting event, and we haven’t pulled it off yet. We were going to try to do one in Akron, but, logistically, it’s very difficult. I don’t want to do it out in the halls when everybody goes to get a hot dog. I want to have people stand up in the stands and just begin to perform. We haven’t quite been able to conquer the logistics—maybe we need to wait for the seventh-inning stretch or something like that. But we won’t quit until we get one of those done, for sure.

Twilley: What happens after you reach one thousand?

Scholl: We have some incredibly big surprises coming for the last handful of them, in terms of scale, which will be exciting. I think it actually has a life of its own. In the eight cities that we focused on, the performers have formed strong partnerships. Venue-wise, Macy’s was our opening partner. They’ve been wonderful to work with, and you really haven’t lived until you’ve stopped traffic in Macy’s six times in a day during a Saturday shoe sale. Many of those partnerships will go on.

Twilley: I’m curious about how well such a physical, immediate project lives online, too. Was that the plan originally?

Scholl: Very much so. I knew that we couldn’t make the kind of investment we were going to make if only between 50 and 100 people were going to see these performances each time. By filming many of them—we’ve filmed close to 100 now—and putting them up on the web, we’ve touched millions and millions of people.

We did a big one in Philadelphia that got a lot of international media attention, and what was amazing was that, after watching it, people started clicking onto all the other ones we had online. People would literally sit there and go through all 30 of them that were on at the time, or all 50, or all 70. Even ones that we didn’t think were going to get much traction have 175,000 views now.

Manaugh: Aside from “Random Acts of Culture,” how else do you make a city sing?

Scholl: One of the things that happened here in Aspen this week is the thirtieth rendition of something called Community Supported Art. It’s a really beautiful project that was started by a woman named Laura Zabel in St. Paul, Minnesota, which is one of the Knight cities where we have the art program. She has an organization there called Springboard for the Arts that finds ways to increase artists’ value in and to their community.

I’m sure that you’ve heard of community-supported agriculture—the idea that you buy a farm share, and you get a box of whatever’s fresh throughout the year. For Community-Supported Art, Laura’s gotten a series of artists to each make an edition of 50 objects. Some of them go all out and make 50 originals; some of them make a print of 50; some of them will make a record or an mp3. Meanwhile, she sells shares for $350. The CSA supporters show up at a pick-up point, and the artists are there, and the subscribers get nine works of art. The idea is that it’s not for the cognoscenti of the art world. It’s for everybody. And the artists get paid—it’s a modest amount, but the artists get paid.

The real payoff is the connection between the people who are brave enough to buy a share, not knowing what they’ll get, and the artists. This helps demystify the process of collecting art, which is really important to us, because it can be a very elitist activity. It also introduces the artist to 50 new potential patrons. Many of the artists who have participated in Community-Supported Art have received subsequent commissions from people who really like the tiny object they received and want something more.

CSA "harvest" in St. Paul, MN. Photograph by Scott Streble.

It’s really a way of connecting artists with their community in a way that’s different than their current relationship. We’re not trying to get $350 for a CSA from art collectors, because that’s not what they pay for art. We’re trying to get $350 from people who are curious and who want to take a chance. Because once you’re in, and you have nine works of art, then all of a sudden, you’re a collector, too.

In St. Paul, they sell out in five minutes now after announcing it, every time they do it. We asked if we could help ramp it up to more cities. We funded the creation of a playbook. Now, if you want to do a Community-Supported Art program in your city, you just sign up and get the playbook. From there, it doesn’t cost anything to run, and there’s even a little money in the fee structure to cover your admin time.

It’s now been run thirty times across America, and there are fifty more CSAs pending. We actually did one here at the Ideas Festival as a demonstration project. I reached out to six very good Aspen artists, and they agreed to do six objects for a Community-Supported Art edition here. We did a small, twenty-person share, which was a mistake, because we probably could have sold one hundred. People loved it. So now the artists are very excited, and I bet you they’re going to do it again by themselves.

There’s an organic, grassroots element to it where, once you show somebody how to do it, it can be self-perpetuating.

CSA shares awaiting pick up in St. Paul. Photograph courtesy Knight Arts.

Twilley: There’s an interesting overlap between the Community-Supported Art and “Random Acts of Culture” in terms of the idea of surprise. In both examples, you don’t know what you’re getting in advance.

Scholl: Yeah, that’s my thing. It’s something that I care about greatly. I think you have to leave room in your life for happy surprises, and that’s something the arts are really good at delivering.

Another thing, though, that we have a lot of concern about at the Knight Foundation is community arts journalism. We don’t fear for New York or LA or Chicago. There will always be lots of arts coverage in those cities, because they’re dense in populations who care about those things. The New York Times had more than 400 dance reviews last year. But around the country, in some of the cities that the Knight Foundation works in, in terms of the traditional media covering culture, it ranges from not very much to none at all.

Working with the National Endowment for the Arts, we created a contest called the Community Arts Journalism Contest. We asked people in the eight Knight communities of Akron, Charlotte, Detroit, Macon, Georgia, Miami, Philadelphia, San Jose, and St. Paul, Minnesota, to give us their best idea for community arts journalism. We asked for ideas that we could fund that would create more community arts journalism in people’s communities—and better community arts journalism.

CriticCar Detroit. Photograph courtesy Knight Arts.

We thought we’d get just a few entries from each community and we’d fund the best one. We got 233 responses—long, deep, detailed responses—which blew our minds. We’ve chosen three to fund. One is called Critic Car, in Detroit, which is a mobile van that has a booth in it where you can film interviews. It will be parked in front of a dance performance or in front of a gallery, and you’ll be able to go in and give your thoughts about the show.

We’ve funded a joint venture in Philadelphia with Drexel University and the Philadelphia Daily News to create a lot more arts journalism using college students. And we have a really complicated and significant initiative in Charlotte, where the Charlotte Observer has, in essence, donated two additional pages for cultural coverage. They’re working together with an alliance of public TV and radio and online partners and the local state university.

Perhaps the most significant aspect of this is that Rocco was so impressed by the response that he has agreed to add it to list of things that the NEA will fund out of their regular grant program, starting in March. Then, we've committed that if people in Knight communities win, and there’s a match required, we’ll cover that.

Twilley: One of the things that’s really interesting about the Knight Foundation is that the cities in which you operate—cities in which the Knight brothers once owned newspapers—are quite varied in terms of geography, demographics, industries, and so on. Do your programs play out slightly differently in each of the different cities?

Scholl: It took me a while to figure out what they all had in common. What these communities all have in common is that they are all in states of significant transition. Detroit is going in one direction—which I believe is up. Some of the other communities are not fully developed in some cases, or have come off of their highs. They’re all in flux. There is a different level of cultural sophistication in each of them, and I found that very complex to work with, certainly.

We definitely tweak projects as we expand them, to make sure they respond to the particular community. For example, we started a project five years ago in Miami that we call the Knight Arts Challenge, in which we invite anybody in the community to give us their best art idea. If we like it, we’ll fund it. After three years, the project was so successful that we expanded it to Philadelphia. But that’s a project that we’ve continually managed and tweaked because the community’s gotten so engaged. One thing we found—and this shouldn’t have been a revelation, but it was—is that the best art ideas don’t necessarily come from 501(c)(3)s. For me, that was a Eureka moment, because so much funding goes to those kinds of organizations, but art comes from artists.

The latest twist to it is that, out of this year’s Miami finalists, we are picking five up-and-coming artists or organizations and offering them a separate prize based upon the community’s support. We’re going to give them an extra $20,000 just based on who votes for them. We think that this’ll be another way to really have the community be engaged in the selection process.

Microteatro Miami, a 2012 Knight Arts Challenge winner, is presenting a series of short plays in nine shipping containers. Photograph via the Miami New Times.

The Challenge—along with many other things, such as Art Basel—has had a really significant impact on Miami, in terms of how the community perceives itself as culturally. I’ve lived in Miami for almost fifty years, and it wasn’t exactly a cultural oasis when I was growing up there. But the recent achievements are dramatic: we have a Frank Gehry building for the New World Symphony, we have a brand new Herzog & de Meuron building coming out of the ground for the Miami Art Museum. We have a science museum underway with Grimshaw doing the design. We have a Herzog & de Meuron parking lot. We have a Zaha Hadid parking garage. We have an Arquitectonica parking garage.

We do things a little different down there when it comes to architecture, but we do them. It’s been a really incredible…you can’t call it a renaissance, because it never happened before. It’s been an incredible cultural awakening. And I think the Knight contest, with its open invitation to people to express themselves culturally, has been very meaningful.

Random Act of Culture in Miami; photograph courtesy of Knight Arts.

Manaugh: I’m curious about the idea of bringing the arts to people, and how that requires you to expand the toolkit of traditional cultural philanthropy. For example, could you have even more of a long-term impact on a community not by funding an arts performance but by paying, say, for free guitar lessons for every 15-year-old in town?

Scholl: Arts education is a difficult minefield to deal in, but we believe that one of the things that kids remember is field trips. That really sticks. We’ve done a couple of things in that direction. We have funded a ten million dollar grant to the Miami Art Museum to make sure that every single third-grader in Dade County—27,000 kids—will go to that museum every year in perpetuity.

The other thing we support is in very close cooperation with the superintendent of schools in Miami-Dade County, which is the fourth-largest school district in America, with 327,000 students. He has a plan called the Cultural Passport in which every grade, K through 12, gets aligned with a cultural institution in town. In kindergarten, you might go to the Miami Children’s Museum, and, in first grade, you might go to the Performing Arts Center, and, in second grade, you might go to the ballet, and, in third grade, you’re going to go to the Miami Art Museum. By fifth grade, you might go MOCA, the Museum of Contemporary Art. Each of the institutions gets assigned a grade, and it’s a pretty great experience. We’ve given well over a million dollars to support that, and we were able to take the number of kids participating in that program from 55,000 to 110,000.

It’s not guitar lessons, but it is universal!

A selection of works from Dennis and Debra Scholl’s personal art collection is currently on display at the Nevada Museum of Art, Venue’s parent institution. Featuring 40 works by 18 artists, Hook, Line & Sinker is “an exhibition of drawings construed in the widest sense, as an anthology of practices deployed by artists to configure the world,” and is on display through April 28, 2013.
Every day and night, beneath the streets of San Francisco, huge wheels turn, pulling cable cars to their far-flung destinations and back again, as if weaving them across the city in loops.

The cars shuttle passengers up the peninsula's hills and down again, around the city's densely built core, through neighborhoods such as Chinatown, Russian Hill, and the Financial District, riding atop a geometry of iron tracks, underground cables, and spinning sheaves embedded in the streets themselves.

These wheels — and the spider's nest of cables they pull — are free and open to the public for daily visits, courtesy of the surprisingly fantastic San Francisco Cable Car Museum.

An otherwise nondescript brick building at 1201 Mason Street hides a cavernous and open interior that stands all but gutted to make space for these vast winding wheels and the electric motors that drive them.

Inside, steps bring visitors up to a viewing platform for a bird's eye view of the loud and clanking operation, amidst rich smells of fuel and industrial lubricants, as if wandering into a scene from a Jules Verne short story.

The museum itself opened back in 1974, and, in addition to the spectacular engine and winding wheel overlook, it holds a series of plinths and display cases located off to the sides, showcasing "various mechanical devices such as grips, track, cable, brake mechanisms, tools, detailed models, and a large collection of historic photographs.

However, it's not until you descend into an underground viewing area to see the the spinning "sheaves" that bring each of the four cable lines back into the building from their channels beneath the streets that the immense strangeness of the cable car system really becomes apparent.

The fact that something so familiar and over-photographed — in an era dominated by notions of urban software, immaterial metaphors of "the cloud," and the very idea of "smart cities" — actually operates by way of shadowy, clockwork mechanical systems so exhilaratingly titanic, analogue, and, frankly, bizarre was an astonishing thing to learn.

Walking down into a cramped and under-lit vault in which it's too dark to take an effective casual photograph, you peer out through thick glass windows onto what appears to be a medieval guild room, a giant's collection of oversized seismic gyroscopes, or perhaps the villain's lair from some as-yet-unmade sequel to Spiderman.

Here, you realize that this hallway, an underground corridor spinning with Piranesian wheels and cables

— actually connects onward to other halls and sheave rooms, and that those, too, are connected by way of subterranean trenches through which tar-covered steel cables are pulled at a steady 9 mph, and that those very cables are then responsible for the constant whirring and machine-like patter one hears coming from grates in the middle of the street on certain routes through San Francisco.

It's as if a huge stringed instrument has been wound through the basements of the city, a singing nervous system that hauls vehicles the size of small buildings up and down fog-shrouded hills.

Engineer Andrew Hallidie's patent drawing for the "Endless Wire Ropeway," as implemented under the streets of San Francisco.

In his classic essay on the prison images of Piranesi, filmmaker Sergei Eisenstein writes of chaotic spaces in which architectural fragments, arches, and "broken balconies" constantly "leap" and "explode" beyond their gravitational bounds. He describes a centrifugal space that "whirls off somewhere," as if "in a hurricane, dashing in all directions: ropes, runaway staircases, exploding arches, stone blocks breaking away from each other."

It is in "the nature of architectural fantasies," Eisenstein writes, that such a space might "carry the eye into unknown depths, and the staircases, ledge by ledge, extend to the heavens, or in a reverse cascade of these same ledges, rush downward."

San Francisco's cable car system is a wonderfully mundane "architectural fantasy," in Eisenstein's terms, an everyday piece of urban infrastructure formed by a literally marvelous webwork of cables and tracks that collaboratively strain to pull together the city. It is also the only mobile National Monument in the world.

Even better, the Cable Car Museum remains free to visit. It can be found at 1201 Mason Street, where the Herculean wheels await your wonder.
  Getting more posts...