FeedIndex
Filter: Interview  view all
Ellis Barstow, the protagonist in Nick Arvin's most recent novel, is a reconstructionist—an engineer who uses forensic analysis and simulation to piece together, in minute detail, what happened at a car crash site and why.

The novel is based on Arvin's own experiences in the field of crash reconstruction: Arvin thus leads an unusual double-life as a working mechanical engineer and a successful author of literary fiction. Following an introduction to Arvin's work from writer, friend, and fellow explorer of speculative landscapes Scott Geiger, Venue sat down with Arvin on the cozy couches of the Lighthouse Writers Workshop in Denver for an afternoon of conversation and car crash animations.




Flipping open his laptop, Arvin began by showing us a "greatest hits" reel drawn from his own crash reconstruction experience. Watching the short, blocky animations—a semi-truck jack-knifing across the center line, an SUV rear-ending a silver compact car, before ricocheting backward into a telephone pole—was surprisingly uncomfortable. As he hit play, each scene was both unspectacular and familiar—a rural two-lane highway in the rain, a suburban four-way stop surrounded by gas stations and fast-food franchises—yet, because we knew that an impact was inevitable, these everyday landscapes seemed freighted with both anticipation and tragedy.

The animations incorporated multiple viewpoints, slowing and replaying the moment(s) of impact, and occasionally overlaying an arrow, scale, or trajectory trace. This layer of scientific explanation provided a jarring contrast to the violence of the collision itself and the resulting wreckage—of lives, it was hard not to imagine, as well as the scattered vehicles.



As we went on to discuss, it is precisely this disjuncture—between the neat explanations provided by laws of physics and the random chaos of human motivation and behavior—that The Reconstructionist takes as its territory.

Our conversation ranged from the art of car crash forensics to the limits of causality and chance, via feral pigs, Walden Pond, and the Higgs boson. The edited transcript is below.

• • •

Nicola Twilley: Walk us though how you would build and animate these car crash reconstructions.

Nick Arvin: In the company where I worked, we had an engineering group and an animation group. In the engineering group, we created what we called motion data, which was a description of how the vehicle moved. The motion data was extremely detailed, describing a vehicle’s movement a tenth of a second by a tenth of a second. At each of those points in time we had roll, pitch, yaw, and locations of vehicles. To generate such detailed data, we sometimes used a specialized software program⎯the one we used is called PC-Crash⎯or sometimes we just used some equations in Excel.


A screenshot from the PC-Crash demo, which boasts that the "Specs database contains vehicles sold in North America from 1972 to the present," and that "up to 32 vehicles (including cars, trucks, trailers, pedestrians, and fixed objects such as trees or barriers) can be loaded into a simulation project."

When you’re using PC-Crash, you start by entering a bunch of numbers to tell the program what a vehicle looks like: how long it is, where the wheels are relative to the length, how wide it is, where the center of gravity is, how high it is, and a bunch of other data I’m forgetting right now.

Once you’ve put in the parameters that define the vehicle, it’s almost like a video game: you can put the car on the roadway and start it going, and you put a little yaw motion in to start it spinning. You can put two vehicles in and run them into each other, and PC-Crash will simulate the collision, including the motion afterward, as they come apart and roll off to wherever they roll off to.

We then fed that motion data to the animators, and they created the imagery.


A screenshot of PC-Crash's "Collision Optimizer."


As the demo promises, "in PC-Crash 3D, the scene can be viewed from any angle desired."

Often, you would have a Point A and a Point B, and you would need the animation to show how the vehicle got from one point to the other.

Point A might be where two vehicles have crashed into each other, which is called the “point of impact.” The point of impact was often fairly easy to figure out. When vehicles hit each other—especially in a head-on collision—the noses will go down and gouge into the road, and the radiator will break and release some fluid there, marking it. Then, usually, you know exactly where the vehicle ended up, which is Point B, or the “point of rest.” But connecting Points A and B was the tricky part.

Twilley: In real life, are you primarily using these kind of animations to test what you think happened, or is it more useful to generate a range of possibilities of which you can then look for evidence on the ground? In the book, for example, your reconstructionists seem to do both, going back and forth between the animation and the actual ground, generating and testing hypotheses.

Arvin: That’s right. That’s how it works in real life, too. Sometimes we would come up with a theory of what happened and how the vehicles had moved, and then we’d recreate it in an animation, as a kind of test. Generating a realistic-looking animation is very expensive, but you can create a crude version pretty easily. We’d watch the animation and say, “That just doesn’t look right.” You have a feel for how physics works; you can see when an animation just doesn’t look right. So, very often, we’d look at an animation and say to ourselves: we haven’t got this right yet.


Screenshot from a sample 3D car crash animation created by Kineticorp; visit their website for the video.

One of the challenges of the business is that when you’re creating an animation for court, every single thing in it has to have a basis that’s defensible. An animation can cost tens of thousands of dollars to generate, and if there is one detail that’s erroneous, the other side can say, “Hey, this doesn’t make sense!” Then the entire animation will be thrown out of court, and you’ve just flushed a lot of money down the toilet.

So you have to be very meticulous and careful about the basis for everything in the animation. You have to look at every single mark on the vehicle and try to figure out exactly where and how it happened.

In the novel there is an example of this kind of thinking when Boggs shows Ellis how, when looking at a vehicle that has rolled over, you literally examine each individual scratch mark on the vehicle, because a scratch can tell you about the orientation of the vehicle as it hit the ground, and it can also tell you where the vehicle was when the scratch was made, since asphalt makes one kind of scratch, while dirt or gravel will make a different type of scratch.

For one case I worked on—a high-speed rollover where the vehicle rolled three or four times—we printed out a big map of the accident site. In fact, it was so big we had to roll out down the hallway. It showed all of the impact points that the police had documented, and it showed all of the places where broken glass had been deposited as the vehicle rolled. We had a toy model of the car, and we sat there on the floor and rolled the toy from point to point on the map, trying to figure out which dent in the vehicle corresponded to which impact point on the ground.

I remember the vehicle had rolled through a barbed wire fence, and that there was a dent in one of the doors that looked like a pole of some kind had been jammed into the sheet metal. We figured it had to be one of the fence posts, but we struggled with it for weeks, because everything else in the roll motion indicated that, when the car hit the fence, the door with the dent in it would have been on the opposite side of the vehicle. We kept trying to change the roll motion to get that door to hit the fence, but it just didn’t make sense.

Finally, one of my colleagues was going back through some really poor-quality police photographs. We had scarcely looked at them, because they were so blurry you could hardly see anything. But he happened to be going back through them, and he noticed a fireman with a big crowbar. And we realized the crowbar had made the dent! They had crowbarred the door open.


Screenshots from sample 3D car crash animations created by Kineticorp; visit their website for the video.

Sometimes, though, even after all that meticulous attention to detail, and even if you believe you have the physics right, you end up playing with it a little, trying to get the motion to look real. There’s wiggle room in terms of, for example, where exactly the driver begins braking relative to where tire marks were left on the road. Or, what exactly is the coefficient of friction on this particular roadway? Ultimately, you’re planning to put this in front of a jury and they have to believe it.

Twilley: So there’s occasionally a bit of an interpretive leeway between the evidence that you have and the reconstruction that you present.

Arvin: Yes. There’s a lot of science in it, but there is an art to it, as well. Pig Accident 2, the crash that Ellis is trying to recreate at the start of my book, is a good example of that.

It’s at the start of the book, but it was actually the last part that was written. I had written the book, we had sold it, and I thought I was done with it, but then the editor—Cal Morgan at Harper Perennial—sent me his comments. And he suggested that I needed to establish the characters and their dynamics more strongly, early in the book.

I wanted an accident to structure the new material around, but by this time I was no longer working as a reconstructionist, and all my best material from the job was already in the book. So I took a former colleague out for a beer and asked him to tell me about the stuff he’d been working on.

He gave me this incredible story: an accident that involved all these feral pigs that had been hit by cars and killed, lying all over the road. Then, as a part of his investigation, he built this stuffed pig hide on wheels, with a little structure made out of wood and caster wheels on the bottom. They actually spray-painted the pig hide black, to make it the right color. He said it was like a Monty Python skit: he’d push it out on the road, then go hide in the bushes while the other guy took photographs. Then he’d have to run out and grab the pig whenever a car came by.



But there wasn’t any data coming out of that process that they were feeding into their analysis; it was about trying to convince a jury whether you can or can’t see a feral pig standing in the middle of the road.

Manaugh: That’s an interesting analogy to the craft of writing fiction, related to the question of what is sufficient evidence for something to be believable.

Arvin: Exactly. It’s so subjective.

In that case, my friend was working for the defense, which was the State Highway Department—they were being sued for not having built a tunnel under the road for the wild pigs to go through. In the novel, it takes place in Wisconsin, but in reality it happened in Monterey, California. They’ve got a real problem with wild pigs there.

Monterey has a phenomenal number of wild pigs running around. As it turned out, the defense lost this case, and my friend said that it was because it was impossible to get a jury where half the people hadn’t run into a pig themselves, or knew somebody who had had a terrible accident with a pig. The jury already believed the pigs were a problem and the state should be doing something about it.


Screenshot from a sample 3D car crash animation created by Kineticorp; visit their website for the video.

Geoff Manaugh: In terms of the narrative that defines a particular car crash, I’m curious how reconstructionists judge when a car crash really begins and ends. You could potentially argue that you crashed because, say, a little kid throws a water balloon into the street and it distracts you and, ten seconds later, you hit a telephone pole. But, clearly, something like a kid throwing a water balloon is not going to show up in PC-Crash.

For the purpose of the reconstructionist, then, where is the narrative boundary of a crash event? Does the car crash begin when tires cross the yellow line, or when the foot hits the brakes—or even earlier, when it started to rain, or when the driver failed to get his tires maintained?

Arvin: It’s never totally clear. That’s a grey area that we often ended up talking about and arguing about. In that roll-over crash, for example, part of the issue was that the vehicle was traveling way over the speed limit, but another issue was that the tires hadn’t been properly maintained. And when you start backing out to look at the decisions that the drivers made at different moments leading up to that collision, you can always end up backing out all the way to the point where it’s: well, if they hadn’t hit snooze on the alarm clock that morning

Twilley: Or, in your novel’s case, if they weren’t married to the wrong woman…

Arvin: [laughs] Right.

We worked on this one case where a guy’s car was hit by the train. He was a shoe salesman, if I remember right, and he was going to work on a Sunday. It just happened to be after the daylight savings time change, and he was either an hour ahead or an hour behind getting to work. The clock in the car and his watch hadn’t been reset yet.

He’d had this job for four years, and he’d been driving to work at the same time all those years, so he’d probably never seen a train coming over those tracks before—but, because he was an hour off, there was a train. So, you know, if he’d remembered to change his clocks…


Screenshots from sample 3D car crash animations created by Kineticorp; visit their website for the video.

Twilley: That reminds me of something that Boggs says in the book: “It’s a miracle there aren’t more miracles.”

Arvin: Doing that work, you really start to question, where are those limits of causality and chance? You think you’ve made a decision in your life, but there are all these moments of chance that flow into that decision. Where do you draw a line between the choices you made in your life and what’s just happened to you? What’s just happenstance?

It’s a very grey area, but the reconstructionist has to reach into the grey area and try to establish some logical sequence of causality and responsibility in a situation.

Twilley: In the novel, you show that reconstructionists have a particular set of tools and techniques with which to gain access to the facts about a past event. Other characters in the book have other methods for accessing the past: I’m thinking of the way Ellis’s father stores everything, or Heather’s photography. In the end, though it seems as though the book is ambivalent as to whether the past is accessible through any of those methods.

Arvin: I think that ambivalence is where the book is. You can get a piece of the past through memory and you can get a piece through the scientific reconstruction of things. You can go to a place now, as it is physically; you can look of a photograph of how it was; you can create a simulation of the place as it was in your computer: but those are all representations of it, and none of them are really it. They are all false, to an extent, in their own way.

The best I think you can hope to do is to use multiple methods to triangulate and get to some version of what the past was. Sometimes they just contradict each other and there’s no way to resolve them.


Screenshots from sample 3D car crash animations created by Kineticorp; visit their website for the video.

Working as a reconstructionist, I was really struck by how often people’s memories were clearly false, because they’d remember things that just physically were not possible. Newton’s laws of motion say it couldn’t have happened. In fact, we would do our best to completely set aside any witness testimony and just work from the physical evidence. It was kind of galling if there was not just enough physical evidence and you had to rely on what somebody said as a starting point.

Pedestrian accidents tended to be like that, because when a car runs into a person it doesn’t leave much physical evidence behind. When two cars run into each other, there’s all this stuff left at the point where they collided, so you can figure out where that point was. But, when a car runs into a person, there’s nothing left at that point; when you try to determine where the point of impact was, you end up relying on witness testimony.


Screenshots from a PC-Crash demo showing load loss and new "multibody pedestrian" functionality.

Twilley: In terms of reconciling memory and physical evidence—and this also relates to the idea of tweaking the reconstruction animation for the jury—the novel creates a conflict about whether it’s a good idea simply to settle for a narrative you can live with, however unreliable it might be, or to try to pin it down with science instead, even if the final result doesn’t sit right with you.

Arvin: Exactly. It sets up questions about how we define ourselves and what we do when we encounter things that conflict with our sense of identity. If something comes up out of the past that doesn’t fit with who you have defined yourself to be, what do you do with that? How much of our memories are shaped by our sense of identity versus the things we’ve actually done?

Twilley: It’s like a crash site: once the lines have been repainted and the road resurfaced, to what extent is that place no longer the same place where the accident occurred, yet still the place that led to the accident? That’s what’s so interesting about the reconstructionist’s work: you’re making these narratives that define a crash for a legal purpose, yet the novel seems to ask whether that is really the narrative of the crash, whether the actual impact is not the dents in the car but what happens to people’s lives.

Arvin: I always felt that tension—you are looking at the physics and the equations in order to understand this very compressed moment in time, but then there are these people who passed through that moment of time, and it had a huge effect on their lives. Within the work, we were completely disregarding those people and their emotions—emotions were outside our purview. Writing the book for me was part of the process of trying to reconcile those things.


Screenshot from a sample 3D car crash animation created by Kineticorp; visit their website for the video.

Manaugh: While I was reading the book, I kept thinking about the discovery of the Higgs boson, and how, in a sense, its discovery was all a kind of crash forensics.

Arvin: You’re right. You don’t actually see the particle; you see the tracks that it’s made. I love that. It’s a reminder that we’re reconstructing things all the time in our lives.

If you look up and a window is open, and you know you didn’t open it, then you try to figure out who in the house opened it. There are all these minor events in our lives, and we constantly work to reconstruct them by looking at the evidence around us and trying to figure out what happened.

Manaugh: That reminds me of an anecdote in Robert Sullivan’s book, The Meadowlands, about the swamps of northern New Jersey. One of his interview subjects is a retired detective from the area who is super keyed into his environment—he notices everything. He explains that this attention to microscopic detail is what makes a good detective as opposed to a bad detective. So, in the case of the open window, he’ll notice it and file it away in case he needs it in a future narrative.

What he tells Sullivan is that, now that he is retired, it’s as though he’s built up this huge encyclopedia of little details with the feeling that they all were going to add up to this kind of incredible moment of narrative revelation. And then he retired. He sounds genuinely sad—he has so much information and it’s not going anywhere. The act of retiring as a police detective meant that he lost the promise of a narrative denouement.

Arvin: That’s great. I think of reconstruction in terms of the process of writing, too. Reconstruction plays into my own particular writing technique because I tend to just write a lot of fragments initially, then I start trying to find the story that connects those pieces together.

It also reminds me of one of my teachers, Frank Conroy, who used to talk about the contract between the reader and the writer. Basically, as a writer, you’ve committed to not wasting the reader’s time. He would say that the reader is like a person climbing a mountain, and the author is putting certain objects along the reader’s path that the reader has to pick up and put into their backpack; when they get to the top of the mountain there better be something to do with all these things in their backpack, or they are going to be pissed that they hauled it all the way up there.

That detective sounds like a thwarted reader. He has the ingredients for the story—but he doesn’t have the story.


Screenshots from sample 3D car crash animations created by Kineticorp; visit their website for the video.

Twilley: In the novel, you deliberately juxtapose a creative way of looking—Heather’s pinhole photography—and Ellis’s forensic, engineering perspective. It seems rare to be equipped with both ways of seeing the world. How does being an engineer play into writing, or vice versa?

Arvin: I think the two things are not really that different. They are both processes of taking a bunch of little things—in engineering, it might be pieces of steel and plastic wire, and, in writing a novel, they’re words—and putting them together in such a way that they work together and create some larger system that does something pleasing and useful, whether that larger thing is a novel or a cruise ship.

One thing that I think about quite a bit is the way that both engineering and writing require a lot of attention to ambiguity. In writing, at the sentence level, you really want to avoid unintentional ambiguity. You become very attuned to places where your writing is potentially open to multiple meanings that you were not intending.

Similarly, in engineering, you design systems that will do what you want them to do, and you don’t have room for ambiguity—you don’t want the power plant to blow up because of an ambiguous connection.

But there’s a difference at the larger level. In writing, and writing fiction in particular, you actually look for areas of ambiguity that are interesting, and you draw those out to create stories that exemplify those ambiguities—because those are the things that are interesting to think about.

Whereas, in engineering, you would never intentionally take an ambiguity about whether the cruise ship is going to sink or not and magnify that!


Screenshot from a sample 3D car crash animation created by Kineticorp; visit their website for the video.

Twilley: I wanted to switch tracks a little and talk about the geography of accidents. Have you come to understand the landscape in terms of its potential for automotive disaster?

Arvin: When you are working on a case—like that rollover—you become extremely intimate with a very small piece of land. We would study the accident site and survey it and build up a very detailed map of exactly how the land is shaped in that particular spot. You spend a lot of time looking at these minute details, and you become very familiar with exactly how lands rolls off and where the trees are, and where the fence posts are and what type of asphalt that county uses, because different kinds of asphalt have different friction effects.

Manaugh: The crash site becomes your Walden Pond.

Arvin: It does, in a way. I came to feel that, as a reconstructionist, you develop a really intimate relationship with the roadway itself, which is a place where we spend so much time, yet we don’t really look at it. That was something I wanted to bring out in the book—some description of what that place is, that place along the road itself.

You know, we think of the road as this conveyance that gets us from Point A to Point B, but it’s actually a place in and of itself and there are interesting things about it. I wanted to look at that in the book. I wanted to look at the actual road and the things that are right along the road, this landscape that we usually blur right past.

The other thing your question makes me think about is this gigantic vehicle storage yard I describe in the novel, where all the crashed vehicles that are in litigation are kept. It’s like a museum of accidents—there are racks three vehicles high, and these big forklift trucks that pick the vehicles up off the racks and put them on the ground so you can examine them.


A vehicle scrapyard photographed by Wikipedia contributor Snowmanradio.

Manaugh: Building on that, if you have a geography of crashes and a museum of crashes, is there a crash taxonomy? In the same way that you get a category five hurricane or a 4.0 earthquake, is there, perhaps, a crash severity scale? And if so, then you can imagine at one end of it, the super-crash—the crash that maybe happens once every generation—

Arvin: The unicorn crash!

Manaugh: Exactly—Nicky and I were talking about the idea of a “black swan” crash on the way over here. Do you think in terms of categories or degrees of severity, or is every crash unique?

Arvin: I haven’t come across a taxonomy like that, although it’s a great idea. The way you categorize crashes is single vehicle, multiple vehicle, pedestrian, cyclist, and so on. They also get categorized as rollover collision, collision that leads to a rollover, and so on. So there are categories like that, and they immediately point you to certain kinds of analysis. The way you analyze a rollover is quite a bit different from how you analyze an impact. But there’s no categorization that I am aware of for severity.

I only did it for three years, so I’m not a grizzled reconstructionist veteran, but even in three years you see enough of them that you start to get a little jaded. You get an accident that was at 20 miles an hour, and you think, that’s not such a big deal. An accident in which two vehicles, each going 60 miles an hour, crash head-on at a closing speed of 120 miles an hour—now, that’s a collision!


Screenshot from a sample 3D car crash animation created by Kineticorp; visit their website for the video.

You become a little bit of an accident snob, and resisting that was something that I struggled with. Each accident is important to the people who were in it. And, there was a dark humor that tended to creep in, and that worried me, too. On the one hand, it helps keep you sane, but on the other hand, it feels very disrespectful.

Twilley: Have you been in a car accident yourself?

Arvin: I had one, luckily very minor, accident while I was working as reconstructionist—around the time that I was starting to work on this book. I heard the collision begin before I saw it, and what I really remember is that first sound of metal on metal.

Immediately, I felt a lurch of horror, because I wasn’t sure what was happening yet, but I knew it could be terrible. You are just driving down the road and, all of a sudden, your life is going to be altered, but you don’t know how yet. It’s a scary place—a scary moment.



Twilley: Before we wrap up, I want to talk about some of your other work, too. An earlier novel, Articles of War, was chosen for “One Book, One Denver.” I’d love to hear about the experience of having a whole city read your book: did that level of public appropriation reshape the book for you?

Arvin: That’s an interesting question. There were some great programs: they had a professional reader reading portions of it, and there was a guy who put part of it to music, so it was reinterpreted in a variety of ways. That was really, really fun for me. It brought out facets of the book that I hadn’t been fully aware of.

The whole thing gave me an opportunity to meet a lot of people around the city who had read the book. I did a radio interview with high school students who had read the book—this was when we were deeper into the Iraq war and there were a lot of parallels being drawn with that war. And these were kids who were potentially going off to that war, so that was very much on their mind.

You had this concentrated group of people looking at the book and reading it and talking about it, and everybody’s got their own way of receiving it. It helped me see how, once a book is out there, it isn’t mine anymore. Every reader makes it their own.

Manaugh: Finally, I’m interested in simply how someone becomes a reconstructionist. It’s not a job that most people have even heard of!

Arvin: True. For me, it was a haphazard path. Remember how we talked earlier about that gray area between the choices you made in your life and what’s just happened to you?

I have degrees in mechanical engineering from Michigan and Stanford. When I finished my Masters at Stanford, I went to work for Ford. I worked there for about three years. Then I was accepted into Iowa Writer’s Workshop, so I quit Ford to go to Iowa. I got my MFA, and then I was given a grant to go write for a year. My brother had moved to Denver a year earlier, and it seemed like a cool town so I moved here. Then my grant money ran out, and I had to find a job.

I began looking for something in the automotive industry in Denver, and there isn’t much. But I had known a couple people at Ford who ended up working in forensics, so I started sending my resume to automobile forensics firms. It happened that the guy who got my resume was a big reader, and I had recently published my first book. He was impressed by that, so he brought me in for an interview.

In that business, you write a lot of reports and he thought I might be helpful with that.


Screenshots from sample 3D car crash animation created by Kineticorp; visit their website for the video.

Twilley: Do you still work as an engineer, and, if so, what kinds of projects are you involved with?

Arvin: I work on power plants and oil and gas facilities. Right now, I am working on both a power plant and an oil facility in North Dakota—there’s lots of stuff going on out there as part of the Bakken play. It’s very different from the forensics.

Twilley: Do you take an engineering job, then quit and take some time to write and then go back into the engineering again? Or do you somehow find a way to do both?

Arvin: I do both. I work part time. Part-time work isn’t really easy to find as an engineer, but I’ve been lucky, and my employers have been great.

Engineers who write novels are pretty scarce. There are a few literary writers who started out in engineering but have gotten out of it—Stewart O’Nan is one, George Saunders is another. There’s Karl Iagnemma, who teaches at MIT. There are a few others, especially in the sci-fi universe.

I feel as though I have access to material—to a cast of characters and a way of thinking—that’s not available to very many writers. But the engineering work I’m doing now doesn’t have quite the same dramatic, obvious story potential that forensic engineering does. I remember when I first started working in forensics, on day one, I thought, this is a novel right here.
A landscape painting above Penny Boston's living room entryway depicts astronauts exploring Mars.

Penelope Boston is a speleo-biologist at New Mexico Tech, where she is Director of Cave and Karst Science. She graciously welcomed Venue to her home in Los Lunas, New Mexico, where we arrived with design futurist Stuart Candy in tow, en route to dropping him off at the Very Large Array later that day.

Boston's work involves studying subterranean ecosystems and their extremophile inhabitants here on Earth, in order to better imagine what sorts of environments and lifeforms we might encounter elsewhere in the Universe. She has worked with the NASA Innovative Advanced Concepts program (NIAC) to develop protocols for both human extraterrestrial cave habitation and for subterranean life-detection missions on Mars, life which she believes is highly likely to exist.

Over the course of the afternoon, Boston told Venue about her own experiences on Mars analog sites; she explained why she believes there is a strong possibility for life below the surface of the Red Planet, perhaps inside the planet's billion year-old networks of lava tubes; she described her astonishing (and terrifying) cave explorations here on Earth; and we touch on some mind-blowing ideas seemingly straight out of science fiction, including extreme forms of extraterrestrial life (such as dormant life on comets, thawed and reawakened with every passage close to the sun) and the extraordinary potential for developing new pharmaceuticals from cave microorganisms. The edited transcript of our conversation is below.

• • •


The Flashline Mars Arctic Research Station (FMARS) on Devon Island, courtesy the Mars Society.

Geoff Manaugh: As a graduate student, you co-founded the Mars Underground and then the Mars Society. You’re a past President of the Association of Mars Explorers, and you’re also now a member of the science team taking part in Mars Arctic 365, a new one-year Mars surface simulation mission set to start in summer 2014 on Devon Island. How does this long-term interest in Mars exploration tie into your Earth-based research in speleobiology and subterranean microbial ecosystems?

Penelope Boston: Even though I do study surface things that have a microbial component, like desert varnish and travertines and so forth, I really think that it’s the subsurface of Mars where the greatest chance of extant life, or even preservation of extinct life, would be found.

Nicola Twilley: Is it part of NASA’s strategy to go subsurface at any point, to explore caves on Mars or the moon?

Boston: Well, yes and no. The “Strategy” and the strategy are two different things.

The Mars Curiosity rover is a very capable chemistry and physics machine and I am, of course, dying to hear the details of the geochemistry it samples. A friend of mine, for instance, with whom I’m also a collaborator, is the principal investigator of the SAM instrument. Friends of mine are also on the CheMin instrument. So I have a vested interest, both professionally and personally, in the Curiosity mission.

On the other hand, you know: here we go again with yet another mission on the surface. It’s fascinating, and we still have a lot to learn there, but I hope I will live long enough to see us do subsurface missions on Mars and even on other bodies in the solar system.

Unfortunately, right now, we are sort of in limbo. The downturn in the global economy and our national economy has essentially kicked NASA in the head. It’s very unclear where we are going, at this point. This is having profound, negative effects on the Agency itself and everyone associated with it, including those of us who are external fundees and sort of circum-NASA.

On the other hand, although we don’t have a clear plan, we do have clear interests, and we have been pursuing preliminary studies. NASA has sponsored a number of studies on deep drilling, for example. One of the most famous was probably about 15 years ago, and it really kicked things off. That was up in Santa Fe, and we were looking at different methodologies for getting into the subsurface.

I have done a lot of work, some of which has been NASA-funded, on the whole issue of lava tubes—that is, caves associated with volcanism on the surface. Now, Glenn Cushing and Tim Titus at the USGS facility in Flagstaff have done quite a bit of serious work on the high-res images coming back from Mars, and they have identified lava tubes much more clearly than we ever did in our earlier work over the past decade.

Surface features created by lava tubes on Mars; image via ESA

Twilley: Are caves as common on Mars as they are on Earth? Is that the expectation?

Boston: I’d say that lava tubes are large, prominent, and liberally distributed everywhere on Mars. I would guess that there are probably more lava tubes on Mars than there are here on Earth—because here they get destroyed. We have such a geologically and hydro-dynamically active planet that the weathering rates here are enormous.

But on Mars we have a lot of factors that push in the other direction. I’d expect to find tubes of exceeding antiquity—I suspect that billions-of-year-old tubes are quite liberally sprinkled over the planet. That’s because the tectonic regime on Mars is quiescent. There is probably low-level tectonism—there are, undoubtedly, Marsquakes and things like that—but it’s not a rock’n’roll plate tectonics like ours, with continents galloping all over the place, and giant oceans opening up across the planet.

That means the forces that break down lava tubes are probably at least an order of magnitude or more—maybe two, maybe three—less likely to destroy lava tubes over geological time. You will have a lot of caves on Mars, and a lot of those caves will be very old.

Plus, remember that you also have .38 G. The intrinsic tensile strength of the lava itself, or whatever the bedrock is, is also going to allow those tubes to be much more resistant to the weaker gravity there.

Surface features of lava tubes on Mars; image via ESA

Manaugh: I’d imagine that, because the gravity is so much lower, the rocks might also behave differently, forming different types of arches, domes, and other formations underground. For instance, large spans and open spaces would be shaped according to different gravitational strains. Would that be a fair expectation?

Boston: Well, it’s harder to speculate on that because we don’t know what the exact composition of the lava is—which is why, someday, we would love to get a Mars sample-return mission, which is no longer on the books right now. [sighs] It’s been pushed off.

In fact, I just finished, for the seventh time in my career, working on a panel on that whole issue. This was the E2E—or End-to-End—group convened by Dave Beatty, who is head of the Mars Program at the Jet Propulsion Laboratory [PDF].

About a year ago, we finished doing some intensive international work with our European Space Agency partners on Mars sample-return—but now it’s all been pushed off again. The first one of those that I worked on was when I was an undergraduate, almost ready to graduate at Boulder, and that was 1979. It just keeps getting pushed off.

I’d say that we are very frustrated within the planetary and astrobiology communities. We can use all these wonderful instruments that we load onto vehicles like Curiosity and we can send them there. We can do all this fabulous orbital stuff. But, frankly speaking, as a person with at least one foot in Earth science, until you’ve got the stuff in your hands—actual physical samples returned from Mars—there is a lot you can’t do.

Looking down through a "skylight" on Mars; image via NASA/JPL/University of Arizona

Image via NASA/JPL/University of Arizona

Twilley: Could you talk a bit about your work with exoplanetary research, including what you’re looking for and how you might find it?

Boston: [laughs] The two big questions!

But, yes. We are working on a project at Socorro now to atmospherically characterize exoplanets. It’s called NESSI, the New Mexico Exoplanet Spectroscopic Survey Instrument. Our partner is Mark Swain, over at JPL. They are doing it using things like Kepler, and they have a new mission they’re proposing, called FINESSE. FINESSE will be a dedicated exoplanet atmospheric characterizer.

We are also trying to do that, in conjunction with them, but from a ground-based instrument, in order to make it more publicly accessible to students and even to amateur astronomers.

That reminds me—one of the other people you might be interested in talking to is a young woman named Lisa Messeri, who just recently finished her PhD in Anthropology at MIT. She’s at the University of Pennsylvania now. Her focus is on how scientists like me to think about other planets as other worlds, rather than as mere scientific targets—how we bring an abstract scientific goal into the familiar mental space where we also have recognizable concepts of landscape.

I’ve been obsessed with that my entire life: the concept of space, and the human scaling of these vastly scaled phenomena, is central, I think, to my emotional core, not just the intellectual core.

The Allan Hills Meteorite (ALH84001); courtesy of NASA.

Manaugh: While we’re on the topic of scale, I’m curious about the idea of astrobiological life inhabiting a radically, undetectably nonhuman scale. For example, one of the things you’ve written and lectured about is the incredible slowness it takes for some organisms to form, metabolize, and articulate themselves in the underground environments you study. Could there be forms of astrobiological life that exist on an unbelievably different timescale, whether it’s a billion-year hibernation cycle that we might discover at just the wrong time and mistake, say, for a mineral? Or might we find something on a very different spatial scale—for example, a species that is more like a network, like an aspen tree or a fungus?

Boston: You know, Paul Davies is very interested in this idea—the concept of a shadow biosphere. Of course, I had also thought about this question for many years, long before I read about Davies or before he gave it a name.

The conundrum you face is how you would know—how you would study or even conceptualize—these other biospheres? It’s outside of your normal spatial and temporal comfort zone, in which all of your training and experience has guided you to look, and inside of which all of your instruments are designed to function. If it’s outside all of that, how will you know it when you see it?

Imagine comets. With every perihelion passage, volatile gases escape. You are whipping around the solar system. Your body comes to life for that brief period of time only. Now apply that to icy bodies in very elliptical orbits in other solar systems, hosting life with very long periods of dormancy.

There are actually some wonderful early episodes of The Twilight Zone that tap into that theme, in a very poetic and literary way. [laughs] Of course, it’s also the central idea of some of the earliest science fiction; I suppose Gulliver’s Travels is probably the earliest exploration of that concept.

In the microbial realm—to stick with what we do know, and what we can study—we are already dealing with itsy-bitsy, teeny-weeny things that are devilishly difficult to understand. We have a lot of tools now that enable us to approach those, but, very regularly, we’ll see things in electron microscopy that we simply can’t identify and they are very clearly structured. And I don’t think that they are all artifacts of the preparation—things that get put there accidentally during prep.

A lot of the organisms that we actually grow, and with which we work, are clearly nanobacteria. I don’t know how familiar you are with that concept, but it has been extremely controversial. There are many artifacts out there that can mislead us, but we do regularly see organisms that are very small. So how small can they be—what’s the limit?

A few of the early attempts at figuring this out were just childish. That’s a mean thing to say, because a lot of my former mentors have written some of those papers, but they would say things like: “Well, we need to conduct X, Y, and Z metabolic pathways, so, of course, we need all this genetic machinery.” I mean, come on, you know that early cells weren’t like that! The early cells—who knows what they were or what they required?

To take the famous case of the ALH84001 meteorite: are all those little doobobs that you can see in the images actually critters? I don’t know. I think we’ll never know, at least until we go to Mars and bring back stuff.

I have relatively big microbes in my lab that regularly feature little knobs and bobs and little furry things, that I am actually convinced are probably either viruses or prions or something similar. I can’t get a virologist to tell me yes. They are used to looking at viruses that they can isolate in some fashion. I don’t know how to get these little knobby bobs off my guys for them to look at.

The Allan Hills Meteorite (ALH84001); courtesy of NASA.

Twilley: In your paper on the human utilization of subsurface extraterrestrial environments [PDF], you discuss the idea of a “Field Guide to Unknown Organisms,” and how to plan to find life when you don’t necessarily know what it looks like. What might go into such a guide?

Boston: The analogy I often use with graduate students when I teach astrobiology is that, in some ways, it’s as if we are scientists on a planet orbiting Alpha Centauri and we are trying to write a field guide to the birds of Earth. Where do you start? Well, you start with whatever template you have. Then you have to deeply analyze every feature of that template and ask whether each feature is really necessary and which are just a happenstance of what can occur.

I think there are fundamental principles. You can’t beat thermodynamics. The need for input and outgoing energy is critical. You have to be delicately poised, so that the chemistry is active enough to produce something that would be a life-like process, but not so active that it outstrips any ability to have cohesion, to actually keep the life process together. Water is great as a solvent for that. It’s probably not the only solvent, but it’s a good one. So you can look for water—but do you really need to look for water?

I think you have to pick apart the fundamental assumptions. I suspect that predation is a relatively universal process. I suspect that parasitism is a universal process. I think that, with the mathematical work being done on complex, evolving systems, you see all these emerging properties.

Now, with all of that said, the details—the sizes, the scale, the pace, getting back to what we were just talking about—I think there is huge variability in there.

Caves on Mars; images courtesy of NASA/JPL-Caltech/ASU/USGS.

Twilley: How do you train people to look for unrecognizable life?

Boston: I think everybody—all biologists—should take astrobiology. It would smack you on the side of the head and say, “You have to rethink some of these fundamental assumptions! You can’t just coast on them.”

The organisms that we study in the subsurface are so different from the microbes that we have on the surface. They don’t have any predators—so, ecologically, they don’t have to outgrow any predators—and they live in an environment where energy is exceedingly scarce. In that context, why would you bother having a metabolic rate that is as high as some of your compatriots on the surface? You can afford to just hang out for a really long time.

We have recently isolated a lot of strains from these fluid inclusions in the Naica caves—the one with those gigantic crystals. It’s pretty clear that these guys have been trapped in these bubbles between 10,000 and 15,000 years. We’ve got fluid inclusions in even older materials—in materials that are a few million years old, even, in a case we just got some dates for, as much as 40 million years.


Naica Caves, image from the official website. The caves are so hot that explorers have to wear special ice-jackets to survive.

One of the caveats is, of course, that when you go down some distance, the overlying lithostatic pressure of all of that rock makes space impossible. Microbes can’t live in zero space. Further, they have to have at least inter-grain spaces or microporosity—there has to be some kind of interconnectivity. If you have organisms completely trapped in tiny pockets, and they never interact, then that doesn’t constitute a biosphere. At some point, you also reach temperatures that are incompatible with life, because of the geothermal gradient. Where exactly that spot is, I don’t know, but I’m actually working on a lot of theoretical ideas to do with that.

In fact, I’m starting a book for MIT Press that will explore some of these ideas. They wanted me to write a book on the cool, weird, difficult, dangerous places I go to and the cool, weird, difficult bugs I find. That’s fine—I’m going to do that. But, really, what I want to do is put what we have been working on for the last thirty years into a theoretical context that doesn’t just apply to Earth but can apply broadly, not only to other planets in our solar system, but to one my other great passions, of course, which is exoplanets—planets outside the solar system.

One of the central questions that I want to explore further in my book, and that I have been writing and talking about a lot, is: what is the long-term geological persistence of organisms and geological materials? I think this is another long-term, evolutionary repository for living organisms—not just fossils—that we have not tapped into before. I think that life gets recycled over significant geological periods of time, even on Earth.

That’s a powerful concept if we then apply it to somewhere like Mars, for example, because Mars does these obliquity swings. It has super-seasonal cycles. It has these little dimple moons that don’t stabilize it, whereas our moon stabilizes the Earth’s obliquity level. That means that Mars is going through these super cold and dry periods of time, followed by periods of time where it’s probably more clement.

Now, clearly, if organisms can persist for tens of thousands of years—let alone hundreds of thousands of years, and possibly even millions of years—then maybe they are reawakenable. Maybe you have this very different biosphere.

Manaugh: Like a biosphere in waiting.

Boston: Yes—a biosphere in waiting, at a much lower level.

Recently, I have started writing a conceptual paper that really tries to explore those ideas. The genome that we see active on the surface of any planet might be of two types. If you have a planet like Earth, which is photosynthetically driven, you’re going to have a planet that is much more biological in terms of the total amount of biomass and the rates at which this can be produced. But that might not be the only way to run a biosphere.

You might also have a much more low-key biosphere that could actually be driven by geochemical and thermal energy from the inside of the planet. This was the model that we—myself, Chris McKay, and Michael Ivanoff, one of our colleagues from what was the Soviet Union at the time—published more than twenty years ago for Mars. We suggested that there would be chemically reduced gases coming from the interior of the planet.

That 1992 paper was what got us started on caves. I had never been in a wild cave in my life before. We were looking for a way to get into that subsurface space. The Department of Energy was supporting a few investigators, but they weren’t about to share their resources. Drilling is expensive. But caves are just there; you can go inside them.

So that’s really what got us into caving. It was at that point where I discovered caves are so variable and fascinating, and I really refocused my career on that for the last 20 years.


Lechuguilla Cave, photograph by Dave Bunnell.


Penelope Boston caving, image courtesy of V. Hildreth-Werker, from "Extraterrestrial Caves: Science, Habitat, Resources," NIAC Phase I Study Final Report, 2001.

The first time I did any serious caving was actually in Lechuguilla Cave. It was completely nuts to make that one’s first wild cave. We trained for about three hours, then we launched into a five-day expedition into Lechuguilla that nearly killed us! Chris McKay came out with a terrible infection. I had a blob of gypsum in my eye and an infection that swelled it shut. I twisted my ankle. I popped a rib. Larry Lemke had a massive migraine. We were not prepared for this. The people taking us in should have known better. But one of them is a USGS guide and a super caving jock, so it didn’t even occur to him—it didn’t occur to him that we were learning instantaneously to operate in a completely alien landscape with totally inadequate skills.

All I knew was that I was beaten to a pulp. I could almost not get across these chasms. I’m a short person. Everybody else was six feet tall. I felt like I was just hanging on long enough so I could get out and live. I've been in jams before, including in Antarctica, but that’s all I thought of the whole five days: I just have to live through this.

But, when I got out, I realized that what the other part of my brain had retained was everything I had seen. The bruises faded. My eye stopped being infected. In fact, I got the infection from looking up at the ceiling and having some of those gooey blobs drip down into my eye—but, I was like, “Oh my God. This is biological. I just know it is.” So it was a clue. And, when, I got out, I knew I had to learn how to do this. I wanted to get back in there.

ESA astronauts on a "cave spacewalk" during a 2011 training mission in the caves of Sardinia; image courtesy of the ESA.

Manaugh: You have spoken about the possibility of entire new types of caves that are not possible on Earth but might be present elsewhere. What are some of these other cave types you think might exist, and what sort of conditions would have formed them? You’ve used some great phrases to describe those processes—things like “volatile labyrinths” and “ice volcanism” that create speleo-landscapes that aren’t possible on Earth.

Boston: Well, in terms of ice, I’ll bet there are all sorts of Lake Vostok-like things out there on other moons and planets.

The thing with Lake Vostok is that it’s not a "lake." It’s a cave: a cave in ice. The ice, in this case, acts as bedrock, so it’s not a lake at all. It’s a closed system.

Manaugh: It’s more like a blister: an enclosed space full of fluid.

Boston: Exactly. In terms of speculating on the kinds of caves that might exist elsewhere in the universe, we are actually working on a special issue for the Journal of Astrobiology right now, based on the extraterrestrial planetary caves meeting that we did last October. We brought people from all over the place. This is a collaboration between my Institute—the National Cave and Karst Research Institute in Carlsbad, where we have our headquarters—and the Lunar and Planetary Institute.

The meeting was an attempt to explore these ideas. Karl Mitchell from JPL, who I had not met previously, works on Titan; he’s on the Cassini Huygens mission. He thinks he is seeing karst-like features on Titan. Just imagine that! Hydrocarbon fluids producing karst-like features in water-ice bedrock—what could be more exotic than that?

That also shows that the planetary physics dominates in creating these environments. I used to think that the chemistry dominated. I don’t think so anymore. I think that the physics dominates. You have to step away from the chemistry at first and ask: what are the fundamental physics that govern the system? Then you can ask: what are the fundamental chemical potentials that govern the system that could produce life? It’s the same exercise with imagining what kind of caves you can get—and I have a lurid imagination.


From "Human Utilization of Subsurface Extraterrestrial Environments," P. J. Boston, R. D. Frederick, S. M. Welch, J. Werker, T. R. Meyer, B. Sprungman, V. Hildreth-Werker, S. L. Thompson, and D. L. Murphy, Gravitational and Space Biology Bulletin 16(2), June 2003.

One of the fun things I do in my astrobiology class every couple of years is the capstone project. The students break down into groups of four or five, hopefully well-mixed in terms of biologists, engineers, chemists, geologists, physicists, and other backgrounds.

Then they have to design their own solar system, including the fundamental, broad-scale properties of its star. They have to invent a bunch of planets to go around it. And they have to inhabit at least one of those planets with some form of life. Then they have to design a mission—either telescopic or landed—that could study it. They work on this all semester, and they are so creative. It’s wonderful. There is so much value in imagining the biospheres of other planetary bodies.

You just have to think: “What are the governing equations that you have on this planet or in this system?” You look at the gravitational value of a particular body, its temperature regime, and the dominant geochemistry. Does it have an atmosphere? Is it tectonic? One of the very first papers I did—it appeared in one of these obscure NASA special publications, of which they print about 100 and nobody can ever find a copy—was called “Bubbles in the Rocks.” It was entirely devoted to speculation about the properties of natural and artificial caves as life-support structures. A few years later, I published a little encyclopedia article, expanding on it, and I’m now working on another expansion, actually.

I think that, either internally, externally, or both, planetary bodies that form cracks are great places to start. If you then have some sort of fluid—even episodically—within that system, then you have a whole new set of cave-forming processes. Then, if you have a material that can exist not only in a solid phase, but also as a liquid or, in some cases, even in a vapor phase on the same planetary body, then you have two more sets of potential cave-forming processes. You just pick it apart from those fundamentals, and keep building things up as you think about these other cave-forming systems and landscapes.

ESA astronauts practice "cavewalking"; image courtesy ESA-V. Corbu.

Manaugh: One of my favorite quotations is from a William S. Burroughs novel, where he describes what he calls “a vast mineral consciousness at absolute zero, thinking in slow formations of crystal.”

Boston: Oh, wow.

Manaugh: I mention that because I’m curious about how the search for “extraterrestrial life” always tends to be terrestrial, in the sense that it’s geological and it involves solid planetary formations. But what about the search for life on a gaseous planet—would life be utterly different there, chemically speaking, or would it simply be sort of dispersed, or even aerosolized? I suppose I’m also curious if there could be a “cave” on a gaseous planet and, if so, would it really just be a weather system? Is a “cave” on a gaseous planet actually just a storm? Or, to put it more abstractly, can there be caves without geology?

Boston: Hmm. Yes, I think there could be. If it was enclosed or self-perpetuating.

Manaugh: Like a self-perpetuating thermal condition in the sky. It would be a sort of atmospheric “cave.”

Twilley: It would be a bubble.

ESA astronauts explore caves in Sardinia; image courtesy ESA–R. Bresnik.

Boston: In terms of life that could exist in a permanent, fluid medium that was gaseous—rather than a compressed fluid, like water—Carl Sagan and Edwin Salpeter made an attempt at that, back in 1975. In fact, I use their "Jovian Gasbags" paper as a foundational text in my astrobiology classes.

But an atmospheric system like Jupiter is dominated—just like an ocean is—by currents. It’s driven by thermal convection cells, which are the weather system, but it’s at a density that gives it more in common with our oceans than with our sky. And we are already familiar with the fact that our oceans, even though they are a big blob of water, are spatially organized into currents, and they are controlled by density, temperature, and salinity. The ocean has a massively complex three-dimensional structure; so, too, does the Jovian atmosphere. So a gas giant is really more like a gaseous ocean I think.

Now, the interior machinations that go on in inside a planet like Jupiter are driving these gas motions. There is a direct analogy here to the fact that, on our rocky terrestrial planet, which we think of as a solid Earth, the truth is that the mantle is plastic—in fact, the Earth’s lower crust is a very different substance from what we experience up here on this crusty, crunchy top, this thing that we consider solid geology. Whether we’re talking about a gas giant like Jupiter or the mantle of a rocky planet like Earth, we are really just dealing with different regimes of density—and, here again, it’s driven by the physics.

ESA astronauts set up an experimental wind-speed monitoring station in the caves of Sardinia; image courtesy ESA/V. Crobu.

A couple of years ago, I sat in on a tectonics class that one of my colleagues at New Mexico Tech was giving, which was a lot of fun for me. Everybody else was thinking about Earth, and I was thinking about everything but Earth. For my little presentation in class, what I tried to do was think about analogies to things on icy bodies—to look at Europa, Titan, Enceledus, Ganymede, and so forth, and to see how they are being driven by the same tectonic processes, and even producing the same kind of brittle-to-ductile mantle transition, but in ice rather than rock.

I think that, as we go further and further in the direction of having to explain what we think is going on in exoplanets, it’s going to push some of the geophysics in that direction, as well. There is amazingly little out there. I was stunned, because I know a lot of planetary scientists who are thinking about this kind of stuff, but there is a big gulf between Earth geophysics and applying those lessons to exoplanets.

ESA astronauts prepare for their 2013 training mission in the caves of Sardinia; image courtesy ESA-V. Crobu.

Manaugh: We need classes in speculative geophysics.

Boston: Yeah—come on, geophysicists! [laughs] Why shouldn’t they get in the game? We’ve been doing it in astrobiology for a long time.

In fact, when I’ve asked my colleagues certain questions like, “Would we even get orogeny on a three Earth-mass planet?” They are like, “Um… We don’t know.” But you know what? I bet we have the equations to figure that out.

It starts with something as simple as that: in different or more extreme gravitational regimes, could you have mountains? Could you have caves? How could you calculate that? I don’t know the answer to that—but you have to ask it.

ESA astronauts take microbiological samples during a 2011 training mission in the caves of Sardinia; image courtesy of the ESA.

Twilley: You’re a member of NASA’s Planetary Protection Subcommittee. Could you talk a little about what that means? I’m curious whether the same sorts of planetary protection protocols we might use on other planets like Mars should also be applied to the Earth’s subsurface. How do we protect these deeper ecosystems? And how do we protect deeper ecosystems on Mars, assuming there are any?

Boston: That’s a great question. We are working extremely hard to do that, actually.

Planetary protection is the idea that we must protect Earth from off-world contaminants. And, of course, vice versa: we don’t want to contaminate other planets, both for scientific reasons and, at least in my case, for ethical reasons, with biological material from Earth.

In other words, I think we owe it to our fellow bodies in the solar system to give them a chance to prove their biogenicity or not, before humans start casually shedding our skin cells or transporting microbes there.

That’s planetary protection, and it works both ways.

One thing I have used as a sales pitch in some of my proposals is the idea that we are attempting to become more and more noninvasive in our cave exploration, which is very hard to do. For example, we have pushed all of our methods in the direction of using miniscule quantities of sample. Most Earth scientists can just go out and collect huge chunks of rock. Most biologists do that, too. You grow E. coli in the lab and you harvest tons of it. But I have to take just a couple grams of material—on a lucky day—sometimes even just milligrams of material, with very sparse bio density in there. I have to work with that.

What this means is that the work we are doing also lends itself really well to developing methods that would be useful on extraterrestrial missions.

In fact, we are pushing in the direction of not sampling at all, if we can. We are trying to see what we can learn about something before we even poke it. So, in our terrestrial caving work, we are actually living the planetary protection protocol.

We are also working in tremendously sensitive wilderness areas and we are often privileged enough to be the only people to get in there. We want to minimize the potential contamination.

That said, of course, we are contaminant sources. We risk changing the environment we’re trying to study. We struggle with this. I struggle with it physically and methodologically. I struggle with it ethically. You don’t want to screw up your science and inadvertently test your own skin bugs.

I’d say this is one of those cases where it’s not unacceptable to have a nonzero risk—to use a double negative again. There are few things in life that I would say that about. Even in our ridiculous risk-averse culture, we understand that for most things, there is a nonzero risk of basically anything. There is a nonzero risk that we’ll be hit by a meteorite now, before we are even done with this interview. But it’s pretty unlikely.

In this case, I think it’s completely unacceptable to run much of a risk at all.

That said, the truth is that pathogens co-evolve with their hosts. Pathogenesis is a very delicately poised ecological relationship, much more so than predation. If you are made out of the same biochemistry I’m made of, the chances are good that I can probably eat you, assuming that I have the capability of doing that. But the chances that I, as a pathogen, could infect you are miniscule. So there are different degrees of danger.

There is also the alien effect, which is well known in microbiology. That is that there is a certain dose of microbes that you typically need to get in order for them to take hold, because they are coming into an area where there’s not much ecological space. They either have to be highly pre-adapted for whatever the environment is that they land in, or they have to be sufficiently numerous so that, when they do get introduced, they can actually get a toehold.

We don’t really understand some of the fine points of how that occurs. Maybe it’s quorum sensing. Maybe it’s because organisms don’t really exist as single strains at the microbial level and they really have to be in consortia—in communities—to take care of all of the functions of the whole community.

We have a very skewed view of microbiology, because our knowledge comes from a medical and pathogenesis history, where we focus on single strains. But nobody lives like that. There are no organisms that do that. The complexity of the communal nature of microorganisms may be responsible for the alien effect.

So, given all of that, do I think that we are likely to be able to contaminate Mars? Honestly, no. On the surface, no. Do I act as if we can? Yes—absolutely, because the stakes are too high.

Now, do I think we could contaminate the subsurface? Yes. You are out of the high ultraviolet light and out of the ionizing radiation zone. You would be in an environment much more likely to have liquid water, and much more likely to be in a thermal regime that was compatible with Earth life.

So you also have to ask what part of Mars you are worried about contaminating.

ESA teams perform bacterial sampling and examine a freshwater supply; top photo courtesy ESA–V. Crobu; bottom courtesy ESA/T. Peake.

Manaugh: There’s been some interesting research into the possibility of developing new pharmaceuticals from these subterranean biospheres—or even developing new industrial materials, like new adhesives. I’d love to know more about your research into speleo-pharmacology or speleo-antibiotics—drugs developed from underground microbes.

Boston: It’s just waiting to be exploited. The reasons that it has not yet been done have nothing to do with science and nothing to do with the tremendous potential of these ecosystems, and everything to do with the bizarre and not very healthy economics of the global drug industry. In fact, I just heard that someone I know is leaving the pharmaceutical industry, because he can’t stand it anymore, and he’s actually going in the direction of astrobiology.

Really, there is a de-emphasis on drug discovery today and more of an emphasis on drug packaging. It is entirely profit-driven motive, which is distasteful, I think, and extremely sad. I see a real niche here for someone who doesn’t want to become just a cog in a giant pharmaceutical company, someone who wants to do a small start-up and actually do drug discovery in an environment that is astonishingly promising.

It’s not my bag; I don’t want to develop drugs. But I see our organisms producing antibiotics all the time. When we grow them in culture, I can see where some of them are oozing stuff—pink stuff and yellow stuff and clear stuff. And you can see it in nature. If you go to a lava tube cave, here in New Mexico, you see they are doing it all the time.

A lot of these chemistry tests screen for mutagenic activity, chemogenic activity, and all of the other things that are indications of cancer-fighting drugs and so on, and we have orders of magnitude more hits from cave stuff than we do from soils. So where is everybody looking? In soils. Dudes! I’ve got whole ecosystems in one pool that are different from an ecosystem in another pool that are less than a hundred feet apart in Lechuguilla Cave! The variability—the non-homogeneity of the subsurface—vastly exceeds the surface, because it’s not well mixed.

ESA astronauts prepare their experiments and gear for a 2013 CAVES ("Cooperative Adventure for Valuing and Exercising human behaviour and performance Skills") mission in Sardinia; image courtesy ESA–V. Crobu

Twilley: In your TED talk, you actually say that the biodiversity in caves on Earth may well exceed the entire terrestrial biosphere.

Boston: Oh, yes—certainly the subsurface. There is a heck of a lot of real estate down there, when you add all those rock-fracture surface areas up. And each one of these little pockets is going off on its own evolutionary track. So the total diversity scales with that. It’s astonishing to me that speleo-bioprospecting hasn’t taken off already. I keep writing about it, because I can’t believe that there aren’t twenty-somethings out there who don’t want to go work for big pharma, who are fascinated by this potential for human use.

There is a young faculty member at the University of New Mexico in Albuquerque, whose graduate student is one of our friends and cavers, and they are starting to look at some of these. I’m like, “Go for it! I can supply you with endless cultures.”

Twilley: In your “Human Mission to Inner Space” experiment, you trialed several possible Martian cave habitat technologies in a one-week mission to a closed cave with a poisonous atmosphere in Arizona. As part of that, you looked into Martian agriculture, and grew what you called “flat crops.” What were they?

Boston: We grew great duckweed and waterfern. We made duckweed cookies. Gus made a rice and duckweed dish. It was quite tasty. [laughs] We actually fed two mice on it exclusively for a trial period, but although duckweed has more protein than soybeans, there weren’t enough carbohydrates to sustain them calorically.

But the duckweed idea was really just to prove a point. A great deal of NASA’s agricultural research has been devoted to trying to grow things for astronauts to make them happier on the long, outbound trips—which is very important. It is a very alien environment and I think people underestimate that. People who have not been in really difficult field circumstances have no apparent understanding of the profound impact of habitat on the human psyche and our ability to perform. Those of us who have lived in mock Mars habitats, or who have gone into places like caves, or even just people who have traveled a lot, outside of their comfort zone, know that. Your circumstances affect you.

One of the things we designed, for example, was a way to illuminate an interior subsurface space by projecting a light through fluid systems—because you’d do two things. You’d get photosynthetic activity of these crops, but you’d also get a significant amount of very soothing light into the interior space.

We had such a fabulous time doing that project. We just ran with the idea of: what you can do to make the space that a planet has provided for you into actual, livable space.

From Boston's presentation report on the Human Utilization of Subsurface Extraterrestrial Environments, NIAC Phase II study (PDF).

Twilley: Earlier on our Venue travels, we actually drove through Hanksville, Utah, where many of the Mars analog environment studies are done.

Boston: I’ve actually done two crews there. It’s incredibly effective, considering how low-fidelity it is.

Twilley: What makes it so effective?

Boston: Simple things are the most critical. The fact that you have to don a spacesuit and the incredible cumbersomeness of that—how it restricts your physical space in everything from how you turn your head to how your visual field is limited. Turning your head doesn’t work anymore, because you just look inside your helmet; your whole body has to turn, and it can feel very claustrophobic.

Then there are the gloves, where you’ve got your astronaut gloves on and you’re trying to manipulate the external environment without your normal dexterity. And there’s the cumbersomeness and, really, the psychological burden of having to simulate going through an airlock cycle. It’s tremendously effective. Being constrained with the same group of people, it is surprisingly easy to buy into the simulation. It’s not as if you don’t know you’re not on Mars, but it doesn’t take much to make a convincing simulation if you get those details right.

The Mars Desert Research Station, Hanksville, Utah; image courtesy of bandgirl807/Wikipedia.

I guess that’s what was really surprising to me, the first time I did it: how little it took to be transform your human experience and to really cause you to rethink what you have to do. Because everything is a gigantic pain in the butt. Everything you know is wrong. Everything you think in advance that you can cope with fails in the field. It is a humbling experience, and an antidote to hubris. I would like to take every engineer I know that works on space stuff—

Twilley: —and put them in Hanksville! [laughter]

Boston: Yes—seriously! I have sort of done that, by taking these loafer-wearing engineers—most of whom are not outdoorsy people in any way, who haunt the halls of MIT and have absorbed the universe as a built environment—out to something as simple as the lava tubes. I could not believe how hard it was for them. Lava tubes are not exactly rigorous caving. Most of these are walk-in, with only a little bit of scrambling, but you would have thought we’d just landed on Mars. It was amazing for some of them, how totally urban they are and how little experience they have of coping with a natural space. I was amazed.

I actually took a journalist out to a lava tube one time. I think this lady had never left her house before! There’s a little bit of a rigorous walk over the rocks—but it was as if she had never walked on anything that was not flat before.

From Venue's own visit to a lava tube outside Flagstaff, AZ.

It’s just amazing what one’s human experience does. This is why I think engineers should be forced to go out into nature and see if the systems they are designing can actually work. It’s one of the best ways for them to challenge their assumptions, and even to change the types of questions they might be asking in the first place.
Gated “Monaco” Lake Las Vegas Homesites Looking West on Grand Corniche Drive, Bankrupt MonteLago Village and Ponte Vecchio Bridge Beyond, Henderson, Nevada (2010)

Photographer Michael Light divides his time between San Francisco and a remote house hear Mono Lake, on the eastern flank—and in the shadow—of the Sierra Nevada. An artist widely known for his aerial work, Light flies the trip himself in a small airplane, usually departing very early in the morning, near dawn, before the turbulence builds up.

Michael Light preps his airplane for flight; photo by Venue.

Venue not only had the pleasure of flying around Mono Lake with Light, but of staying in his home for a few nights and learning more, over the course of several long conversations, about his work.

We took a nighttime hike and hunted for scorpions in the underbrush; we looked at aerial maps of the surrounding area—in fact, most of the U.S. Southwest—to discuss the invisible marbling of military & civilian airspace in the region; and we asked Light about his many projects, their different landscape emphases, the future of photography as a pursuit and profession, and what projects he might take on next.

Flying with Michael Light over Mono Lake; photos by Venue.

From SCUBA diving amidst the nuked ruins of WWII battleships in the most remote waters of the Pacific Ocean to spending years touching up and republishing photos of U.S. nuclear weapons tests for a spectacular and deeply unsettling book called 100 Suns, to his look at the Apollo program of the 1960s as an endeavor very much focused on the spatial experience of another landscape—the lunar surface—to his ongoing visual investigation of housing, urbanization, and rabid over-development in regions like Phoenix and Las Vegas, Light's own discussion of and perspective on his work was never less than compelling.

Thoughtful about the history of landscape representation and the place of his work within it, highly articulate—indeed, it's hard to forget such phrases as "the mine is a city reversed," or that the sunken ruins of WWII battleships "are dissolving like Alka-Seltzer" in the depths of the Pacific—and with an always caustic sense of humor, Light patiently answered our many questions about his work both above the ground and below sea level.

We discussed the overlapping physical pleasures of flying and SCUBA diving, how nuclear weapons have transformed the Western notion of the landscape sublime, what cameraphones are doing to the professional photographer, and what it means to transgress into today's corporate-controlled air spaces above vast mining and extraction sites in the West.

Shadow at 300’, 1300 hours, Deep Springs Valley, CA (2001)

Finally, for those of you in or around New York City this month, Light coincidentally has a new exhibition opening at the Danziger Gallery on October 30. Check back with the gallery's website for more information as the opening approaches.

• • •

Geoff Manaugh: I’d like to start by asking how the aerial view ties into the nature of your work in general. You’ve spoken to William L. Fox in an interview for the Some Dry Space exhibition about a feeling of spatial “delirium,” suggesting that the experience of moving through the sky is something viscerally attractive to you. I’m curious if you could talk about that, as a physical sensation, but also about the representational effects of the bird’s eye—or pilot’s eye—view and how it so thoroughly changes the appearance of a landscape.

Clouds Over the Jonah Natural Gas Field, Pinedale, WY (2007)

Michael Light: The short answer is that the aerial view affords a breadth of scale that offers direct access to many of the bigger, more “meta” themes that have always been of interest to me.

But let me take a few steps back and try to explain where all this came from. I got a B.A. in American Studies from Amherst many years ago, and I have since been an Americanist—not in the sense of being an apologist for America, but in the sense of someone trying to figure out what makes this country tick. It is a very, very vast country.

Sheep Hole Mountains at 400’, 0700 hours, Twentynine Palms, CA (2000)

I grew up on the end of Long Island, and I was always getting onto Highway 80 or onto more southerly interstates and heading west. The metaphor that always accompanied me, oddly enough, was one of falling into America rather than crossing it. I was falling into the vastness of America and the sheer scale of it.

Of course, after I moved to California in 1986, I caught myself coming back east quite a bit, for family or for work, and those commercial air flights across the nation, flying coast to coast, were formative and endlessly interesting to me. I don’t ever lower the window shade as requested. If the weather is clear, the odds are that what’s unfolding below, geologically, is the main attraction for me. I just found myself looking down—or looking into—America a lot, and that sense of falling into the country just grew and evolved.

I did a big piece back in the 1990s, when I was still in graduate school. It took a couple of years, but I figured out how to make pretty decent images from 30,000 feet, from the seat of a commercial airliner. For instance, you have to sit in front of the engine so that the heat doesn’t blow the picture; and it’s a contrast game, trying to get enough clarity through all the atmospheric haze and through two layers of plexiglass, and so on and so forth. That piece was based specifically on commercial flights and it was liberating for me in lots of ways.

While working on one of those images, in particular, I had something of an epiphany—I think it was somewhere over Arizona. It’s very spare, arid country, and the incursions of human settlement into it that you see from above look very much like a colony on Mars might look, or the proverbial lunar colony, and I thought “Ah ha! Look at that!” And I realized, at that moment, that maybe I could try to find or document something like a planetary landscape: the way humans live at a planetary scale and through planetary settlements.

Chidago Canyon at 500’, 1800 hours, Chalfant, CA (2001)

This was what got me, pretty soon thereafter, thinking above and beyond the earth: looking toward NASA, and their various programs over the past few decades, and that eventually became Full Moon.

FULL MOON: Composite of David Scott Seen Twice on Hadley Delta Mountain; Photographed by James Irwin, Apollo 15, 1971 (1999)

Manaugh: There’s an interesting book called Moondust by Andrew Smith, which began with Smith’s realization that we are soon approaching an historical moment when every human being who has walked on the moon will be dead. He set about trying to interview every living person—every American astronaut—who has set foot there. What makes it especially fascinating is that Smith portrays the entire Apollo program as a kind of vast landscape project, or act of landscape exploration, as if the whole thing had really just been at attempt at staging a real-life Caspar David Friedrich painting with seemingly endless Cold War funds to back it up. The place of Full Moon in your own work seems to echo that idea, of NASA lunar photography as something like the apotheosis of American natural landscape photography.

Light: The Apollo program was absolutely a landscape project—but also an extreme aerial project. And Full Moon, of course, was also driven by my own interest in the aerial view, or the aerial exterior. That project is nothing if not a really serious exploration of the aerial: that is, if you keep going up and up, the world becomes quite circular and alien. You see the world quite literally as a planet.

FULL MOON: The Ocean of Storms and the Known Sea; Photographed by Kenneth Mattingly, Apollo 16, April 16-27, 1972 (1999)

Anyway, for me, yes, the aerial view has an intense physicality. I’ve been flying planes since before I was driving. I soloed in gliders—engineless aircraft—by 14, and, by 16, I had a private pilot’s license. A glider offers a particularly intimate and very physical way of flying, because you have to work with thermals and updrafts. You don’t have an engine. You actually want it to be turbulent and bumpy up there, because that means that the air is unstable—that parts of the atmosphere are going up and other parts are going down—and, if you can stay in those up parts and find the updrafts, then you can ride it out for hours.

Also, I was lucky enough to start SCUBA diving at the age of 9.

Michael Light at 9 years old, Bimini, Bahamas (1972)

Flying and going underwater are completely connected, at least in my mind. The three-dimensionality of each of them is something I’ve experienced from a very early age, and it is one of my greatest ongoing pleasures. I would say that there’s a tremendous amount of physical pleasure in both—and that, occasionally, it would even be accurate to call it ecstasy.

It’s like skiing or long-distance running: everything’s in the groove, everything sort of falls into place, you’re flying really beautifully, or, oftentimes in my work, you’re transgressing over something, or you’ve got a very intense subject, and you are trying to figure something out as an artist or as a citizen.

Michael Light at 49 years old, Petaluma, CA (2012)

You mentioned delirium. There’s also a certain kind of delirium—a spatial delirium, sure—simply in the pleasure of learning something new and, for me, hopefully putting that 3-dimensional experience into 2-dimensional photographic form. And if it’s good—if the image is good—then hopefully other people can get some of what I got.

Manaugh: This reminds me of a conversation I had with a writer named Kitty Hauser about the history of aerial archaeology. To make a long story short, aerial archaeology, using photographs, was born from military reconnaissance flights over the European front in World War I. The pilots there began noticing that they could see features in the landscape—such as buried or ruined buildings—that were invisible from the ground. When that technique of viewing from above was later exported to England, particularly as the leisure classes and retired military types found the free time and the personal wealth to purchase private airplanes, aerial archaeology as a pursuit really took off, if you’ll excuse the pun. And these early pioneers began to realize that, for example, there are certain times of day when things are more clearly revealed by the angle of the sun, including shadows appearing in wheat and barley fields that, when seen from above, are revealed to be an archaeological site otherwise hidden beneath the plant life. I’m curious how coming back to the same locations at certain times of day, or in certain kinds of light, can make sites or landscapes into radically different photographic experiences—with different depths or different reliefs—and how you plan for that in your shots.

Light: If I go out on an expedition for weeks shooting with an assistant, I don’t immediately fall into that groove. A few days in, everything will align. It certainly is a kind of discipline. You’re flying and imaging and circling—again and again and again, around and around and around—because you can’t just move the camera two inches to the left, or wait 15 minutes. You’re moving along at 60 miles an hour through space. So you have to shoot it again and again and again, until, finally, you get to a point where your physical senses are moving faster than your mind, and you’ve made all the shots that you think you should make—which are generally the worst ones—and it’s at that point that you come up with something genuinely new.

Specifically, I tend to shoot early in the morning and then again in the evening, which is pretty much standard practice because, of course, the lower axial light gives that 3-dimensionality and creates a feeling of revelation. Every once in a while, though, I will shoot in the desert at midday, but it’s usually only when I’m specifically seeking a flat, blown out, almost stunning or hallucinatory light.

Deep Springs Valley at 500’, 1600 hours, Big Pine, CA (2001)

But, early in the morning, the sun seems to go off in the desert like a gun—and, of course, the sun is much softer in the evening, because there’s so much more dust in the air. You really have to get up early. I’ll shoot for an hour and a half, which is all I can really take with the doors off of the aircraft. It’s very windy. It’s very intense. The camera I use is about 20 pounds. So we’ll come back and we’ll have some breakfast—and I’m exhausted. I’ll probably nap around noon for an hour or two then, come 4:00pm or so, we gather our forces and go back up.

It’s always much more turbulent in the afternoon in summer. Summer is when I tend to fly, though, because, of course, in the colder months it’s just too cold. It’s also just a lot more dangerous to cross the mountains when there’s snow on them.

But, on summer afternoons, it can be a wild ride. You strap in there tight. My glider background is helpful here; I know the plane will continue to fly, for instance, and that there’s nothing to be super-scared of. I know I’m at the edges of my equipment’s performance. The specifications on the plane degrade measurably when you take the doors off, because you generate a tremendous amount of drag. In hot temperatures, the engine also tends to run hot and, the hotter the summer air is, the fewer molecules there are under the wings of the aircraft, the fewer molecules there are to combust with the engine fuel, the fewer molecules there are for the propeller to bite into, and you get much more turbulent air. Your aircraft performance falls off measurably.

Afternoon Thunderstorm Looking West, Near Rock Springs, WY (2007)

For example, I often fly from San Francisco over the Sierras to Mono Lake in the summer. The Sierras, on the west side, have a very gradual slope. But on the east side it’s a very dramatic, very steep escarpment. It’s a drop of 7,000 feet almost in a straight line. You have a very smooth, very fast trip up the western slope, but, when you get to the escarpment, you hit what’s called a “rotor.” That’s a very turbulent place where the usual land-to-airflow relationship completely falls apart, because the support has been taken away. For those five miles or so, going east, you’re in a tumbly, sometimes chaotic atmosphere and it can be extremely dangerous, depending on the speed of the wind.

When I hit the rotor, I just think of it in terms of river rafting: looking for eddies, back-flow currents, whirlpools, and so forth. Even though it’s invisible, I know where I’m going to hit turbulence. Even though I can’t see the air, I know, extrapolating from the way that water behaves, where the turbulence will be—like, beyond that rock mountain spire over there, it’s going to be gnarly.

City-Owned Motocross Park Looking North, I-70 Beyond, Lakewood, CO (2009)

To go back to your question: in the six, almost seven years I’ve been flying with engines, the landscape is so perceptually dependent on the type of light that’s illuminating it. You really do get radically different spaces in different kinds of light. A different kind of vibe. Seasons will also change the way a landscape looks—or, I should say, the light itself seasonally changes.

On an artistic level, the ever-changing nature of what I do and how I do it, and even the instability of my position in the sky over the landscape—it’s all part of my process and it’s something I enjoy.

Manaugh: Let’s go back to SCUBA diving. When we talked four or five years ago in Nevada, you were heading off to the Bikini Atoll, to dive amidst the ruins of U.S. warships, and I’d love to learn more about that project. How did it come about, what were you seeking to document, and what were the results? I’m also fascinated by analogy of being in the empty volume of the sky versus being buried in the very full volume of the ocean and how that affects the sense of space in your photography.

Light: The Bikini work grew out of my earlier involvement with imagery of nuclear detonations, which, as you know, was a project called 100 Suns. That was an archival endeavor that came out in 2003.

100 Suns (2003)

As a photographer or maker of images, I’m always as interested in trying to figure out the meaning of the trillions of photographs that have already been made as I am in making new ones of my own. And, culturally, I find it interesting to think about the meaning of photography, in the very large American contexts of Full Moon and 100 Suns. I think of both projects as landscape projects and, certainly, they are also investigations into American power and the peculiarities of American scale.

Nicola Twilley: As a side note, how does an archival project like 100 Suns work, technically, as far as reproducing the images goes?

Light: You scan them. You go in and you clean them up. You do whatever the approach of the hour is. You wind up almost lovingly inside each of the historical photographs. And you get very fond of them; you think of them almost as your own. Of course, they’re not—primarily because you haven’t had the experience of actually going to that space at that particular time and choosing how to make that image.

But I had a very strong desire to go—to make a pilgrimage—to, if not the Nevada Test Site, which I never could get into, then at least to the Pacific Proving Grounds, which I could get to. I tried to get into the Nevada Test Site. You can visit it, physically, but to get over it—in the air—and to make images is basically impossible. The last person to get permission to do that was Emmet Gowin, with his remarkable images. He got in in the 1990s. It took him a decade, and that was before 9/11. I tried again, and I was negotiating directly with the head of the site, but I just could never do it.

However, one can get out to Bikini, and the way one gets to Bikini hasn’t changed. At the time I went, there was a dive operation there run by the people of Bikini—who actually live 500 miles away, on a rather awful rock without a lagoon, in a place that they were moved to in 1945. They were basically booted off their atoll by the U.S. government. The people run this dive operation really for propaganda reasons, using it as a method to tell their story.

Bikini Island, Radioactively Uninhabitable Since 1954, Bikini Atoll (2003)

What one goes to dive for there are ships that were sunk in the Operation Crossroads tests of 1946.

At that point, the U.S. Navy—this was, of course, right after Hiroshima and Nagasaki—wanted to know if naval warfare was now utterly obsolete. Could a single bomb destroy an entire navy or a flotilla of ships?

100 SUNS: 058 BAKER/21 kilotons/Bikini Atoll/1946 (2003)

So they gathered almost 100 vessels for the tests, making all sorts of strange, mythic gestures. For instance, they brought the Nagato, which Admiral Yamamoto was on when he orchestrated the attack on Pearl Harbor. They brought that all the way from Tokyo. They brought out the Prinz Eugen from Germany, which was Germany’s most modern battleship. They brought the first American aircraft carrier, the U.S.S. Saratoga, out.

The ships they chose were these giant wartime icons, and they were bombed both from the air, with the Able test, and from 90 feet underwater, by the Baker test. The Baker test gave us the most spectacularly iconic images of Bikini: a water column being blasted up into the sky with the Wilson bell cloud around it that we all know so well.

100 SUNS: 059 BAKER/21 kilotons/Bikini Atoll/1946 (2003)

Those ships are 180 feet down at the bottom of Bikini Lagoon, to this day. They were functional at the time, and they were fully loaded with weaponry and fuel. They were unpopulated, although there were farm animals chained to the decks of the ships. So it’s creepy.

Diving there is pretty hairy. It’s way beyond recreational safety diving limits. 180 feet is dark. 180 feet is cold. You take on a tremendous amount of nitrogen down there. It’s pretty technical. You have to do decompression diving, which is inherently dangerous—you have to breathe helium trimix at about thirty feet below the boat for nearly an hour after twenty minutes at depth, hoping that no tiger shark comes along to eat you, as you adjust.

Shark, Bikini Lagoon (2007)

Once you’re down there, you can penetrate the ships, which are dissolving like Alka-Seltzer. It’s very entropic. You’re suffering, at that depth, from nitrogen narcosis. It’s like having three martinis. You’re pretty zonked out.

I went twice: in 2003 and, again, in 2007. During those trips, I made images from the air, on the surface, and underwater. I dove Bikini Lagoon, down to those ships on the bottom, twice.

Diver descending to 180 feet, Bikini Lagoon (2007)

It was one of the most challenging landscapes I have ever worked in, because almost inconceivable violence occurred to these places—both to Bikini Atoll and to Enewetak Atoll. I only physically went to Bikini Atoll, although I did fly over Enewetak. But both atolls were subjected to human gestures that are, as I said, almost inconceivably violent. To try to represent that photographically is very, very difficult.

In fact, the radiological disaster that occurred in 1954 happened simply because the winds changed direction at the wrong time, blowing back over the atoll at Bikini. During the largest nuclear detonation the United States ever did out there, which was 15 megatons, the winds shifted and everything blew back over the islands. It’s the worst radiological disaster in U.S. history.

Manaugh: I don’t want to sound naïve, but is it safe even to be there? Can you walk around and swim in the water and not get radiation poisoning?

Light: Bikini Atoll is still radioactive and still uninhabited to this day, but, yes, you can go there. As long as you don’t drink the water or eat the coconuts—anything that actually comes in contact with the soil, which has a layer of Cesium-137 in it—then you’re fine. The islands have healed. You know, it’s tropical. They’ve healed. There aren’t five-headed crabs walking around. The fish are fine; you can eat the fish. But it’s still pretty radioactive. I’m walking around in a Speedo bathing suit, thinking, “Wow, I’m glad I’m never having kids, ever!” You can’t feel radiation, but it’s there.

So there you are, having a tropical paradise moment, surrounded by tropical paradise visuals, yet you know, in your head, that this is one of the most violent landscapes on earth.

100 SUNS: 086 MOHAWK/360 kilotons/Enewetak Atoll/1956 (2003)

Two commercial aircraft fly the Marshall Islands. There is no access to private aircraft. The distances are too great. Bikini and Enewetak are in the middle of nowhere—that’s why they were used as test sites in the first place. To get aerial access to them was extremely difficult. I had to shoot from those two commercial air shuttles.

Over Enewetak I was able to get some pretty great images of the Mike crater. Mike was the first H-bomb test or, I should say, the first test of a “thermonuclear device.” It was not a bomb.

Mile-Wide, 200’ Deep 1952 MIKE Crater, 10.4 Megatons, Enewetak Atoll (2003)

That was Edward Teller’s baby, and one big-ass crater. That was 10.4 megatons. The scale of that kind of explosion dwarfs all of the ordinance detonated in both world wars combined. Five seconds after that detonation, the fireball alone was five miles wide. These were really, really big explosions. It’s hard to get your head around how big they were.

100 SUNS: 065 MIKE/10.4 megatons/Enewetak Atoll/1952 (2003)

Getting above and working with the Mike crater was terrific. I was able to get above Bikini, but not above the Bravo crater or out to the farthest edge of the atoll. Bravo was the 15-megaton test that left Bikini radioactive.

100 SUNS: 099 BRAVO/15 megatons/Bikini Atoll/1954 (2003)

However, I was able to dive in the Bravo crater while I was there, which was one of the creepiest experiences of my life. It’s still quite radioactive out on the edge of the crater. There’s a bunker right on the edge of Bravo Crater that’s sheared off at the top.

Radioactive Bunker Facing Mile-Wide, 200’ Deep 1954 BRAVO Crater, Bikini Atoll (2003)

Anyway, it’s obviously very deep and very rich territory. It was pretty amazing to be able to make the pilgrimage after having spent so much time with the archival material as I worked on 100 Suns. I have always felt ambivalent about the Bikini work. I’ve never known quite what to do with it. It is hard to work out there. I think that, ultimately, I will do a small book that will move between historical imagery of the ships and of the servicemen. There were 40,000 servicemen stationed there for several years while the Crossroads tests were happening.

I went back in 2007—I think that was right after you and I first talked about this. I got to do some aerial work and some more work on the ground, but, primarily, that trip was about bringing out a digital camera, which I did not have in 2003, and using it underwater. I had a housing and some lights, but I was not very successful in imaging those ships recognizably at those depths. It’s hard.

Ship Sunk by 1946 Crossroads Tests, Bikini Lagoon (2007)

There’s a lot of organic matter in the water. It’s incredibly dark. It’s very difficult to figure out, conceptually, a way to image the country’s first aircraft carrier. For example, I can’t back away from it enough, underwater, to get the whole thing. In theory, one could put together composite images, shot at a fairly close level, and then sort of stitch together what should look like a ship. But it’s a challenge.

Growth on Ship Sunk By 1946 Crossroads Tests, Bikini Lagoon (2007)

For me, throughout the Bikini work, both in 2003 and in 2007, I have taken the approach of reversing the positive as a conceit toward a sense of visually representing radiation and visually suggesting multiple energy sources other than the sun—multiple sources of light. There are also questions about narrative: about entropy, light, Hades, narcosis, dissolution.

You’ve got this kind of X-ray death trip, if you will.

Tower of the IJN Nagato Battleship, Sunk By 1946 Crossroads Tests, Bikini Lagoon (2007)

It’s a very, very strong feeling, diving amongst those ships, and the ghosts of all the people who died on those ships, and knowing what they were used for and how they were sunk. It almost feels like the last gasp of an industrial era that’s now long over and gone. It was really an age of iron. It’s as far from the digital world that we live in now that you can imagine. It’s a dead era, and the work is tough. It’s not warm and fuzzy, or nostalgic. None of that is what Bikini is about. It’s about as dark as you can get.

Along the USS Saratoga, Sunk By 1946 Crossroads Tests, Bikini Lagoon (2007)

Manaugh: In the context of 100 Suns and even hearing you say things like, “as dark as you can get,” it almost seems as though sites like the Mike crater and even these tropical ruins are like spatial byproducts of very large-scale light events. It’s as if the light of a counter-sun—the nuclear explosion—has created its own landscapes of extreme over-exposure and violence. The scenes you’re documenting, in a sense, are byproducts of light.

Light: Yes, some of this is important to me, and I do tend to think oppositionally, in rather binary terms.

Inside Radioactive Photographic Bunker Built In 1956, Aomon Island, Bikini Atoll (2003)

There are so many levels of meaning to the bomb. There are landscape meanings. There are political meanings. There are industrial meanings. There are scientific meanings. To me, as I mentioned, this is a landscape book at bottom.

I personally see the moment that the Mike device detonated in 1952 as the moment when the classical landscape sublime—which, of course, up to that point was the domain of either the divine or of massively powerful natural forces beyond human control—switched. In 1952, the landscape sublime shifted wholly over to humans as the architect.

I was interested in looking closer at that moment when humans became “the divine”—as powerful as, if not more powerful than, the natural forces that they’re subject to on the planet. What was the effect of that—what did that do to landscape representation—when the sublime became an architecture of ourselves?

100 SUNS: 081 TRUCKEE/210 kilotons/Christmas Island/1962 (2003)

With the attainment of a thermonuclear fusion device, humans are igniting their own stars. What does that mean in landscape terms? What does that mean in architectural terms? When you talk about light itself creating a landscape and leaving behind these giant craters, it’s very resonant territory.

Arguably, humans firing up their own stars could be seen as the absolute pinnacle of a tool-bearing civilization—although it’s equally fair to say that it could be seen as humanity’s greatest tragedy, because it came out of a cauldron of violence and was immediately put back into a cauldron of violence.

100 SUNS: 093 BRAVO/15 megatons/Bikini Atoll/1954 (2003)

To bring us back to ground a little bit here, I did 100 Suns, and I did Full Moon, and I continue to do my aerial forays into the American West, because these are things that I want to learn about and try to understand. I just truly didn’t understand fusion and fission; I really didn’t understand space. I think that, while I have a taste—and the human mind has a taste—for scale, there’s only so much scale that we can take. Even then, we need to have it served to us in smaller chunks.

I found that other books and investigations pertaining to outer space were just way too broad and, in the end, didn’t tell me anything. I don’t get much out of the Hubble images, for example. They’re too big. I have no entranceway into those to conceptualize or think about the subject, so I wind up with cotton candy or some nebula image that’s pretty, sure, but I can’t get any substance out of it.

100 Suns never would have happened without having spent five years on the surface of the moon, metaphorically. Studying the nature of light in a vacuum—that was really the primary interest of mine, artistically, in taking on that project.

FULL MOON: Astronaut's Shadow; Photographed by Harrison Schmitt, Apollo 17, 1972 (1999)

How does light work without atmosphere to break it up? It’s sharper than anything our eyes have evolved to see, and it behaves very differently than it does when diffused by an atmosphere. What does that do to the physical act—the actual technology—of photography as it tries to capture that light? What does that light do to a landscape?

What does that landscape do to all the other landscapes we’ve already seen in the history of landscape photography?

FULL MOON: Morning Sun Near Surveyor Crater, With Blue Lens Flare; Photographed by Charles Conrad, Apollo 12, 1969 (1999)

I spent a lot of time looking at the sun’s effects on the surface of the moon, in near-vacuum conditions, and I thought, “Well, what’s the next logical step for this?”

FULL MOON: Solar Wind Collector; Photographed by Alan Bean, Apollo 12, 1969 (1999)

Certainly, it’s not Mars, as so many publishers would suggest. It seemed more logical to go look directly into that sun and, at least in terms of the 20th century, very clear that I should step back just two or three decades, and deal with the bomb. Of course, the Apollo program never would have happened without ICBMs.

On that level, it’s logical—but it also acts as a kind of psychological journey. In 100 Suns, there’s no handholding that occurs for the viewer to guide them between attraction and repulsion. You’re just thrown into it. There’s science afterward; there’s text afterward; there are explanations afterward; there are politics afterward. But that kind of frontal experience was what I wanted you to feel, as a viewer.

It was a very daunting subject. The scale of America, and the scale of its power, offers an infinite mountain of mystery.

Twilley: In terms of both the moon and some of these military ruins, like the Nevada Test Site, physical access for the photographer is all but impossible. Has this made you interested in remote-viewing, remotely controlled cameras, or even drone photography? What might those technologies do, not necessarily to the future of photography, but to the future of the photographer?

Light: Absolutely. I think it’s important to remember that the vast majority of the Apollo photographs were made without anyone looking through a viewfinder.

Those cameras were mounted on the surface of the moon or on the chest area of the spacesuit. With a proper wide-angle lens and an electric advance, the astronauts basically just pointed their bodies in 360-degree circles, at whatever area they were collecting the samples from, and that was the photograph. They were trained very carefully to make sure they could operate the cameras, and there are certainly examples of handheld camera images on the surface of the moon, but a lot of the images were these sort of automatic images you’re talking about—photography without a photographer.

FULL MOON: Alan Bean at Sharp Crater With the Handtool Carrier; Photographed by Charles Conrad, Apollo 12, 1969 (1999)

It’s one of those things that I find interesting about Full Moon, that what we consider to be interesting, photographically, can happen absent of a human set of eyes making the image. Today, as you mention, it’s only getting more extreme.

I should say, at this particular photographic moment, as a photographer myself, I feel overwhelmed. I have not figured out where photography is going. I don’t think anyone has. I certainly know that it’s changing, radically, and sometimes in ways that make me want to run back to the 19th century.

For one thing, everyone’s a photographer now, because everyone has a phone, and those cameras are getting very good. The cameras themselves are doing more and more of the work, as well, work that, traditionally, was the field of the photographer, so the quality of photographs—in the classic sense of things like quality of exposure, density, resolution, contrast, and so forth—is going up and up and up. And, of course, as you well know, there are now systems in place for total and instantaneous publishing of one’s work via the Internet. I think we are entering a world of total documentation.

Obviously, all of this visual information is going to continue to proliferate. I don’t know how to navigate my way through that. I tell myself—because I have my own methods, my own cameras, and my own crazy aerial platform—that my pictures have a view that you are not going to get from a drone.

Personal drones are going to proliferate, and our eyes, soon enough, are going to be able to go anywhere and everywhere without our bodies. Humans have a tremendous interest—they always have had—in extending themselves where they physically cannot go. That’s just picking up more speed now—it’s going faster and faster—and the density of the data is thickening, becoming smog.

I think that photography, or what we currently consider photography, will become more about the concept or the idea driving the picture than the actual picture itself. Maybe that has always been the case. Metaphors are obviously applicable to everything, and you can find them in everything, if you want to. It’s not so much the picture—or, it’s not so much the information in the picture—it’s the spin on it. Information does not equal meaning. Meaning is bigger than information.

I used to fly model aircraft as a kid. It’s a powerful fantasy: mounting a camera on a little electric helicopter and running it around the corner, lifting off over the fence, the hedgerow, the border, and seeing what you can see. I actually do it physically now, in airplanes, and I’m very invested in the physical experience of that. It’s a big part of my aerial work: the politics of transgressing private property in a capitalist society.

I may not be able to get into that gated community on the outskirts of Las Vegas—which is what I’m photographing now, a place called Lake Las Vegas—but, legally, I can get above it and I can make the stories and the images I want to make.

“Monaco” Lake Las Vegas Homes on Gated Grand Corniche Drive, Henderson, NV (2010)

That homeowners’ association, or that world created by developers, wants total control over its narrative, and, in general, they have it. They exclude anyone who wants to tell a different story. So far, with the exception of military air space and occasional prohibited air space around nuclear power plants and that sort of thing, I can still tell my own stories, and I do.

A couple of years ago I went out to Salt Lake City. I sold one of my big handmade books to the art museum there, and I also made an effort to see Kennecott Copper, which is owned by Rio Tinto. I thought they might be interested in buying some of the work—but, as it turned out, they were not at all interested, and, in fact, seemed to wish I didn’t exist.

I met with their PR person—a very nice, chatty PR kind of lady. I showed her this spectacular, 36-inch high and 44-inch wide book of photographs featuring this incredible, almost Wagnerian hole in the ground. And the only thing that she could say, upon seeing the book, was: “How on earth did you get permission?” Not: Wow, these are interesting pictures, or whatever. She instantly zoomed into the question of the legal permission to represent or tell the story of this site. I said: “Well, I didn’t get permission, actually, because I didn’t need permission.” And that was anathema to her; it was anathema to the whole corporate structure that wants to control the story of the Bingham Mine.

Earth’s Largest Excavation, 2.5 Miles Wide and .5 Miles Deep, Bingham Copper Mine, UT (2006)

Anyway, I think it’s through my own selfishness that I would not want to send a drone up to transgress over a site when I could do it, instead. I could just sit at my computer screen and kick back in my chair—but we spend enough time in chairs as it is. It’s more that I am putting my butt on the line; I’m breaking no laws, but there is the experience of physical exploration that I would be denied by using drones. Obviously, in areas where I truly cannot go—like the moon—or where I wouldn’t want to go—like on the edge of one of those nuclear detonations—then I’d be thrilled to have a remote.

Manaugh: You mentioned control over the narrative of the copper mine. It’s as if Kennecott has two-dimensional control over their narrative, through image rights, but they don’t have volumetric, or three-dimensional, control over the narrative, which you can enter into with an airplane and then relate to others in a totally different way.

Light: Of course.

My particular approach, aerially, is very different. The obvious answer is: why not just Google Map it, and zoom in, and then throw a little three-dimensionality on it by moving a little Google Earth lever? But the actual act of going in at the low altitudes that I do lets me make these particular images. I don’t do verticals; I do obliques, because they allow for a relational tableau to happen. To go in low—to make that physical transgression over Bingham or over Lake Las Vegas or over this or that development—is great, and I think it’s a viewpoint that is unique.

Looking East Over Unbuilt “Ascaya” Lots, Black Mountain Beyond, Henderson, NV (2010)

Manaugh: You’ve mentioned Las Vegas, but I’d also like to talk about your Los Angeles work. You basically have two oppositional series—L.A. Day and L.A. Night—which really makes explicit the role light plays in changing how we see a landscape. For instance, in L.A. Night, the city is represented as this William Blake-like microcosm of the universe, with the lights of the houses in the Hollywood hills, and the cars on the freeways, mimicking the stars above them. The city becomes a copy of the sky.

Untitled/Downtown Dusk, Los Angeles (2005)

Then there’s L.A. Day, which confronts the massive Ballardian geometry of the freeways themselves, baking under the sun.

Long Beach Freeway and Atlantic Boulevard Looking Southeast, L.A. River Beyond (2004)

I’m interested in what the city is doing for you in these photographs. Is it a representation of the end of civilization, or is it a strange depiction of new, golden dawn for urban form? What is your attraction to and metaphoric use of the city—of Los Angeles, in particular?

Light: Well, these are very interesting questions. One thing to bear in mind, first of all, is that the day work and the night work is now quite old work to me. The day work was shot in 2004 and the night work was shot in 2005 and it’s just a Los Angeles; it’s not the Los Angeles. It’s very much a particular spot in time that I found myself at that moment. I’ll get into that in a little more detail in a minute.

Back in 1986, when I moved to San Francisco, I wanted to come west for a lot of reasons, one of which was to work for the environment. I had worked for the Sierra Club doing political lobbying with their D.C. office for a couple of years right out of school in the late 1980s. I’ve remained a pretty strong environmentalist, although I try not to make my work tendentious or overtly activist in that sense. I want to be more complicated than that.

Looking Northwest, Somewhere Near Torrance (2004)

Anyway, in San Francisco, the default attitude is to look down your nose at the Southland—like, “Oh, yeah, Los Angeles. It’s everything that’s wrong with America.” The more I’ve lived in California, though, which is 26 years now, the more I have come to realize that this is an extraordinarily common, but very facile, view of Los Angeles. I hope I have grown in the depth of my views about L.A., I’d say, because, if there’s any one thing I’ve learned about photographing Los Angeles—like anywhere else, but particularly L.A.—it’s that, every time you shoot, it’s a different city. L.A. in the spring is one thing. L.A. in the dry summer is another. L.A. day. L.A. night. L.A. color. L.A. black and white. I have been humbled, I think, in a positive way in my views of Los Angeles. Of course, maybe I’ve just gotten more cynical or maybe I’ve gotten a little more complicatedly environmental. But I’m not condemnatory about that city the way I used to be.

L.A. is a massive thing. This is one of the reasons why I was drawn to it in the first place. It’s so big. It’s so complex. Is it apocalyptic? Well, yes; it has a certain apocalyptic quality to it. But, if I’m trying to understand America, or trying to understand the bomb, how could I not try to understand L.A.?

So L.A. Day came directly out of doing 100 Suns. 100 Suns came out in 2003 and I had been spending a tremendous amount of time metaphorically looking at “suns.” Obviously, in L.A. Day, one of the major tropes is that I am shooting directly into the sun, and I’m dealing with air, light, and atmosphere. In that regard, I’m also exploring many of the same things as Full Moon.

I was also just beginning to work with 4x5 negatives, and wanted to go as high-key as possible, to go back into that annihilating desert light. A lot of it was shot either early in the morning or very late in the day, but the whiteness of the light at midday is a very dry, Western, annihilating light that I was also interested in investigating. There’s an image that I’m particularly fond of: it’s downtown L.A. with the river in front, and the city is almost vaporizing. It’s almost just lifting up into the ether. I guess I wasn’t overtly looking for a nuclear moment, something coming so literally from 100 Suns, but, in my mind, that image really—at least, metaphorically—bridges those two projects.

Downtown Los Angeles Looking West, 1st Street Bridge and L.A. River in Foreground (2004)

The night work was kind of a binary reflex. I had been thinking about the old 19th-century blue-sensitive films, where the skies would go pure white, for a while. Full Moon, obviously, is the reversal of that, where the ground—the surface of the moon—is white with undiluted sunlight and the sky is endlessly black.

In the day in L.A. you get the obverse: a terrestrial sky, if you will. L.A. Night is another reversal and a kind of the binary analogue to the moon and its vacuum sky.

Untitled/River Stars, Los Angeles (2005)

Those things were operating in my mind, although the night work also came out of a technical challenge I wanted to face. I wanted to get this 4x5 camera to work from a helicopter. I can only go one-sixtieth of a second. Slower than that and I get a blur. The challenge was: can I actually get enough light on the film at one-sixtieth of a second, either at dusk or in pure dark? Can I even make this work?

I discovered very cheap—relatively speaking—Robinson R22 helicopters, operating out of Van Nuys, that I could get for something like $230 an hour with a pilot. The physical thrill of having your own private dragonfly, really, which is what these helicopters are, also drove my interest. I was doing all this day work and I thought, well: let’s try a night flight. Let’s actually drift over the vastness and the endlessness of the city, and all the light washing around in that basin. It is exquisitely sparkly. It’s delightful. It has some enchantment in a way that Los Angeles, in daylight, does not. It’s rife with metaphor with all the little lights standing in for all the little people.

Untitled/Hollywood, Los Angeles (2005)

I think that, in all of my work since the late 1980s, there has been a transposition between up and down, or a loss of gravitational pull, and that’s very important to me.

FULL MOON: Edward White at 17,500 mph Over the Gulf of Mexico; Photographed by James McDivitt, Gemini 4, 1965 (1999)

A sense of vertigo or spinning in space, the full 3-dimensionality of space—the spatial delirium we were talking about earlier. I’ve always been interested in imagery that gives me a sense of looking up when I am actually looking down. That reversal is something I try to look for.

Sawtooth Mountains Diptych, ID (2012)

But that night work was very much of a moment in time in my own production—meaning that I would not go back to L.A. and make pictures like that again.

The work I’m doing over Vegas couldn’t be more different. It’s color. It’s very much lower to the ground. It’s much more specific to its content. In aerial work for me, not only is there tremendous pleasure in moving through space, 3-dimensionally, there is also tremendous pleasure in moving over and around and amongst geology and amongst actual formations of the land. Much of the content of the western work is about that dialogue between geology and the built world.

Empty Lots in the “Marseilles” Lake Las Vegas Community, Henderson, NV (2011)

The subtitle of my larger project, Some Dry Space, is An Inhabited West. My point is that there is no place that’s untouched anymore. The west is a giant human park.

But, that said, there is still lot of space left and it’s really fun to move through that space. It’s fun to say, well, okay, here’s Phoenix or here’s Los Angeles, but how can I make images that actually show the power of the geology of a place? How do I represent two different time scales? How do I photograph the human one and the tectonic one? I find that dialogue, between a human time frame and the time frame of the land, to be an interesting one. I try to capture both when I can, preferably adjacent to each other in the same picture.

New Construction On East Porter Drive, Camelback Mountain Beyond, Scottsdale, AZ (2007)

Twilley: What have you been trying to capture or represent in your most recent trips out there?

Light: Every flight is different. Every mindset is different. I find that I take radically different pictures each time I go up. It’s an interesting thing. I’ve contained myself to two areas—Lake Las Vegas and the MacDonald Ranch, which is this whole side of a mountain that’s been completely sculpted into house pads. It is the most spectacular, simple engineering project I think I’ve ever seen. It’s very dramatic. Parts of it are built out; parts of it aren’t. I don’t know what the final awful sales name of the development will be, but these will be very high-end homes.

I’ve really taken on the domestic side of Las Vegas, where “California dreams” are to be had on the cheap—and then on the extraordinarily inflated side of things, the delusional, opulent side of things.

Vegas is a very easy target for the sophisticated East Coast cultural critic to come out and judge. But that line of critique is a dead end. It’s not new territory, and it also dismisses the people—the end-users—without asking any questions about how they got there. I’ll nail the developers any day of the week: this is a calculated, rationalized capitalist agenda for them. But the people at the end, on the receiving side of it, the people who are trying to build their lives and their dreams, on whatever unstable sands that they can or can’t afford out there—I would like to present them critically but without condemnation.

Halted “Bella Fiore” Houses and Bankrupt “Falls” Golf Course, Lake Las Vegas, Henderson, NV (2011)

The L.A. work was too high and atmospheric to get political. Now that I’m down, flying much lower and getting closer and closer to the material, I think the work can carry more of an agenda. It is a presentation with sophisticated layering, I hope, rather than a blanket condemnation. Otherwise, I’m looking down my nose, saying, “Oh, look at these poor fools living in Las Vegas, while I’m up in San Francisco living the way people should live.”

The more work I do in Las Vegas, the more I see parallels between the mining industry—and the extraction history of the west—and the inhabitation industry. They do the same sort of things to the land; they grade, flatten, and format the land in similar ways. It can be hard to tell the difference sometimes between a large-scale housing development being prepped for construction and a new strip mine where some multinational firm is prospecting for metals.

Unbuilt “Ascaya” Lots and Cul De Sac Looking West, Henderson, NV (2011)

In other words, the extraction industry and the inhabitation industry are two sides of the same coin. The terraforming that takes place to make a massive development on the outskirts of a city has the same order, and follows the same structure, as much of the terraforming done in the process of mining.

That was a revelation for me. The mine is a city reversed. It is its own architecture.

Hiking Trail and Unbuilt “Ascaya” Lots, Black Mountain Beyond, Henderson, NV (2010)

This latest shoot also resulted in some structural advances in the photographs, in the way that they are composed and the way that they are offset and fragmenting. I was pleased with it. I was also testing out a new camera I had rented.

Twilley: Are you shooting digital?

Light: I am beginning to. I’m trying. I’m renting all the Hasselblads—60 megapixels—that I can get my hands on.

Two years ago now, when I had already been doing the Vegas work for a while, I wanted to get away from the very, very new. I wanted to get away from what was, before the crash, the fastest-growing city in America, and go out to find the very, very old. I flew out to the Acoma Pueblos and the Hopi Mesas, which are the oldest, continuously inhabited settlements on the North American continent.

I worked out there twice, on two separate trips, that summer of 2011. It was amazing: the super-old against the super-new. Obviously, the Vegas work is by helicopter, whereas I’m in my small aircraft over Acoma and Hopi land.

The Hopi outlawed photography, recording, and anthropological visits and sketching back in 1913. You do not roll up onto Hopi land and take pictures or make recordings without their specific permission. Likewise with Acoma: you ask permission. This is sacred territory.

Now, I’m in the air. I don’t have any problem transgressing over corporate property—private property—when I’m in America: it’s my country and I’m an American. I’m an arrogant motherfucker. If I want to make a picture, I’m going to make a picture. I don’t care who you are; I’m going to do it, if I can legally get away with it, and, in the air, I can legally get away with it.

However, I do not have that right over Hopi land and Acoma. I don’t have that right over Native American territory. It is not my country; it’s their country. It’s not my nation. It’s not my inheritance. It’s not my heritage. It’s not my politics. It’s their sovereignty. I truly do not have a right, morally, as far as I am concerned, to transgress those boundaries. I respect them.

On the other hand, I am a photographer—an aerial photographer—and I’m looking for images. I did a lot of legwork. I spoke to photographers who work aerially, and who have worked aerially for decades, in Navajo land and Hopi land. Morally—and, again, this is my compass, not necessarily your compass—my feeling is that if I’m there, in the air, and I’m able to make the image, I’ll make the image. Of course, whether I can use that image after the fact remains to be seen, and that will only be determined after open discussions with various tribal entities.

So, basically, I made images that I may never be able to publish. I made them because I wanted to make them. I made them for myself. I made them as unobtrusively as I possibly could. Mine is a small aircraft. It makes absolutely no sound if I cut the power and I descend. Then, eventually, I have to add power and climb up and out, but it’s a pretty quiet little number. And I would never photograph religious ceremonies.

But if I were ever to publish any of that work, I would show them all the images first; I would give them a copy of all the images; and I would probably offer any revenues from those images to the tribe. But there is a difference between acquiring images and presenting images to the world. It is interesting, these politics.

U.S. Magnesium plant, Great Salt Lake, UT (Google Maps, 2013)

Take the chlorine magnesium plant outside of Salt Lake. This is a plant that’s owned by—I’m blanking on his name. That plant outside Salt Lake is the worst polluter in America.

Manaugh: You mean the Hummer guy? Ira Rennert?

Light: That is exactly right. Ira Rennert. He owns the largest private residence in America. It’s in Sagaponack, New York. I grew up 12 miles from Sagaponack. I know that area very well.

Ira Rennert residence “Fair Field,” Sagaponack, New York: 29 bedrooms, 39 bathrooms, 110,000 sq feet built structures (Google Maps, 2013)

I have a mind—and I have had a mind, for a while—to transgressively photograph his insane, absurd residence at the end of Long Island. I would do a bifurcated book, featuring images of his house and images of the chlorine magnesium plant outside Salt Lake, and let him sue me. Bring it on. But, oh boy, would I have to talk to the lawyers beforehand. You have to plan for lawsuit attack.

Here’s an interesting story: There was a couple—a man and a woman—who made a bunch of money on the Internet, cashed out, and bought a Robinson R44 four-seater helicopter. They did this thing called the California Coastal Records Project, where they systematically documented every single piece of the California coast and put it online. I think you can even zoom in—the images are pretty high-res. I’m not sure if they identified everything on the coast, but there was probably some identification going on. This is the land of Google, right?

But, when they were flying past Malibu—which is just one part of the California coast—they happened to photograph Barbra Streisand’s house. She sued them for $50 million. She claimed invasion of privacy. Happily, the judge threw it out and said, “Grow up, Barbra. This is not about you.” And that is true: they weren’t singling out Barbra Streisand.

Now, if I tackle Mr. Rennert, then that is singling him out.

Anyway, the more I photograph, the more I have become attracted to architecture and the meanings of architecture. As it appears here and there out west in the landscape, architecture stands out so much. It’s just plunked down, naked and exposed. Whatever intentions it has, if there are any, are so apparent.

Houses on the Edge of the Snake River Lava Plain, Jerome, ID (2009)

As I have come to photograph these inhabited landmarks, it’s more and more obvious how the affluent choose to manifest their affluence through architecture. They manifest it by getting or obtaining a certain piece of land—a spectacular piece of land in the spectacular west—and then by building some sort of structure there. They want to insert themselves into the most sublime location possible.

They take in the sublime, as we all would, and as I do, but then they try to project it back out again through a generally dirty and dark architectural mirror. You see it on the Snake River, with the potato barons. You see it in Colorado. You see it in ski towns. In my view, it’s just a re-projection of the American business ego—let’s just call it the American ego—back out into the landscape, via this or that villa. It’s an architectural version of wanting now to be the true authors of the landscape sublime, and part of this abrupt shift from classical, uninhabited landscapes to built landscapes of our own monumental and violent design. That’s all part of what I mean by “the inhabited west."
The paleo-tectonic maps of retired geologist Ronald Blakey are mesmerizing and impossible to forget once you've seen them. Catalogued on his website Colorado Plateau Geosystems, these maps show the world adrift, its landscapes breaking apart and reconnecting again in entirely new forms, where continents are as temporary as the island chains that regularly smash together to create them, on a timescale where even oceans that exist for tens of millions of years can disappear leaving only the subtlest of geological traces.

With a particular emphasis on North America and the U.S. Southwest—where Blakey still lives, in Flagstaff, Arizona—these visually engaging reconstructions of the Earth's distant past show how dynamic a planet we live on, and imply yet more, unrecognizable changes ahead.

The following images come from Ron Blakey's maps of the paleotectonic evolution of North America. The first map shows the land 510 million years ago, progressing from there—reading left to right, top to bottom—through the accretion and dissolution of Pangaea into the most recent Ice Age and, in the final image, North America in its present-day configuration.



Venue met with Blakey in his Flagstaff home to talk about the tectonic processes that make and remake the surface of the Earth, the difficulty in representing these changes with both scientific accuracy and visual panache, and the specific satellite images and software tools he uses to create his unique brand of deep-time cartography.

Like film stills from a 600-million year-old blockbuster, Blakey's maps take us back to the Precambrian—but there are much older eras still, stretching unmapped into far earlier continents and seas, and there are many more billions of years of continental evolution to come. Blakey talked us through some of the most complex changes in recent geological history, including the opening of the North Atlantic Ocean, and he allowed himself to speculate, albeit briefly, about where Earth's continental crust might yet be headed (including a possible supercontinent in the Antarctic).

Many of Blakey's maps are collected in the book Ancient Landscapes of the Colorado Plateau, written with Wayne Ranney, where Blakey also describes some of the research and methods that went into producing them. Blakey also contributed to the recent, new edition of a textbook by Wolfgang Frisch and Martin Meschede, Plate Tectonics: Continental Drift and Mountain Building, a thorough exploration of landscapes disassembling and colliding over vast spans of time.

• • •

The west coast of North America, depicted as it would have been 130 million years ago; the coast is a labyrinth of islands, lagoons, and peninsulas slowly colliding with the mainland to form the mountains and valleys we know today. Map by Ron Blakey.

Geoff Manaugh: When I first discovered your maps showing the gradual tectonic re-location of the continents over hundreds of millions of years, I thought this was exactly what geologists should be doing: offering clear, step-by-step visual narratives of the evolution of the earth’s surface so that people can better understand the planet we live on. What inspired you to make the maps, and how did you first got started with them?

Ronald Blakey: Well, the very first maps I made were in conjunction with my doctoral thesis, back in the early 1970s. Those were made with pen and ink. I made sketches to show what the paleogeography would have looked like for the specific formation I was studying with my doctorate. Three or four of those maps went into the thesis, which was then published by the Utah Geologic Survey. I’ve also done a number of papers over the years where I’ve made sketches.

But I was late getting into the computer. Basically, during my graduate work I never used a computer for anything. I kind of resisted it, because, for the kind of work I was doing, I just didn’t see a need for it—I didn’t do quantifiable kinds of things. Then, of course, along comes email and the Internet. I actually forget when I first started with Photoshop—probably in the mid-1990s. When I found that, I just thought, wow: the power of this is incredible. I quickly learned how to use the cloning tool, so that I could clone modern topography onto ancient maps, and that made things even simpler yet.

Another thing I started doing was putting these maps into presentations. There were something like five different programs back there, in the late 90s, but the only one that survived was PowerPoint—which is too bad, because it was far from the best of the programs. I was using a program called Astound, which was far superior, particularly in the transitions between screens. I could do simple animations. I could make the tectonic plates move, create mountain belts, and so forth.

I retired in May of 2009, but all of my early maps are now online. With each generation of maps that I’ve done, there has been a noted improvement over earlier maps. I find new techniques and, when you work with Photoshop as much as I do, you learn new ideas and you find ways to make things that were a little clumsy look more smooth.

Manaugh: Where does the data come from?

Blakey: It comes from various publications. You can get a publication and have that PDF open, showing what something looked like in the past, and work from that. Usually, what I’m working from are fairly simple sketches published in the literature. They’ll show a subduction zone and a series of violent arcs, or a collision zone. What I do is take this information and make it more pictorial.

If you create a series of maps in sequence, you can create them in such a way that certain geologic events, from one time slice to the next, to the next, to the next, will blend. It depends a lot on the scale of what you’re trying to show—the whole world versus just four or five states in the West.

Now, throughout the years from, let’s say, 2004 until I retired in 2009, I kept improving the website. I envisioned most of this as educational material, and I didn’t pay much attention to who used it, how they used it, and so forth. But, then, shortly before I retired, various book companies and museums—and, most recently, oil companies—have approached me. So I started selling these and I tried very diligently not to allow this to overlap with what I was doing for my teaching and my research at the University.

In the following long sequence of images, we see the evolution of the west coast of North America, its state boundaries ghosted in for reference. Sea levels rise and fall; island chains emerge and collide; mountains forms; inland seas proliferate and drain; and, eventually, modern day California, Vancouver Island, and the Baja peninsula take shape, among other recognizable features. The time frame represented by these images is approximately 500 million years. All maps by Ron Blakey.



Nicola Twilley: What do the oil companies want them for?

Blakey: They’re my biggest customers now. Usually, the geologists at oil companies are working with people who know either much less geology than they do or, in some cases, almost no geology at all, yet they’re trying to convince these people that this is where they need to explore, or this is what they need to do next.

They find these maps very useful to show what the Devonian of North Dakota looked like, for example, which is a hot spot right now with all the shales that they’re developing in the Williston Basin. What they like is that I show what the area might have really looked like. This helps, particularly with people who have only a modest understanding of geology, particularly the geologic past.

Manaugh: What have been some of the most difficult regions or geological eras to map?

Blakey: The most difficult thing to depict is back in the Paleozoic and the Mesozoic. Large areas of the continent were flooded, deep into the interior.

During certain periods, like the Ordovician, the Devonian, and parts of the Jurassic—especially the Cretaceous—as much as two-thirds of the continents were underwater. But they’re still continents; they’re still continental crusts. They’re not oceans. The sea level was just high enough, with respect to where the landscape was at the time, that the area was flooded. Of course, this is a concept that non-geologists really have problems with, because they don’t understand the processes of how continents get uplifted and subside and erode and so forth, but this is one of the concepts that my maps show quite nicely: the seas coming in and retreating.

But it’s very difficult—I mean, there is no modern analog for a seaway that stretched from the Mackenzie River Delta in Canada to the Gulf of Mexico and that was 400 miles wide. There’s nothing like that on Earth today. But the styles of mountains have not dramatically changed over the last probably two billion years—maybe even longer than that. I don’t go back that far—I tend to stick with the last 600 million years or so—but the styles of mountains haven’t changed. The nature of island arcs hasn’t changed, as far as we know.

What has changed is the amount of vegetation on the landscape. My maps that are in the early part of the Paleozoic—the Cambrian and the Ordovician early part of the Silurian—tend to be drab-colored. Then, in the late Silurian and in the Devonian, when the land plants developed, I start bringing vegetation colors in. I try to show the broad patterns of climate. Not in detail, of course—there’s a lot of controversy about certain paleoclimates. But, basically, paleoclimates follow the same kinds of regimens that the modern climates are following: where the oceans are, where the equator is, where the mountain ranges are, and so forth.

That means you can make broad predictions about what a paleoclimate would have been based on its relationship to the equator or based on the presence or absence of nearby mountains. I use these kinds of principles to show more arid areas versus more humid areas.

The next three sequences show the evolution of the Earth's surface in reverse, from the present day to, at the very bottom, 600 million years ago, when nearly all of the planet's landmasses were joined together in the Antarctic. The first sequence shows roughly 90 million years of backward evolution, the continents pulling apart from one another and beginning a slow drift south. They were mapped using the Mollweide projection, and, in all cases, are by Ron Blakey.



Twilley: And you paint the arid area based on a contemporary analog?

Blakey: Right. I know the modern world reasonably well and I’ll choose something today that might have matched the texture and aridity of that older landscape.

I use a program called GeoMapApp that gives me digital elevation maps for anywhere in the world. Most recently, they have coupled it with what they call the “Blue Marble.” NASA has stitched together a bunch of satellite photos of the world in such a way that you can’t tell where one series of photos come in or another. It’s a fairly true-color representation of what Earth would look like from space. So this Blue Marble is coupled with the GeoMapApp’s digital elevation topography; you put the Blue Marble over it, and you use a little slider to let the topography show through, and it gives you a fairly realistic looking picture of what you’re looking for.

For example, if I’m working with a mountain range in the southern Appalachians for a Devonian map—well, the southern Appalachians, during the Devonian, were probably far enough away from the equator that it was in the arid belt. There are some indications of that, as well—salt deposits in the Michigan Basin and in parts of New York and so forth. Plus, there are red-colored sediments, which don’t prove but tend to indicate arid environments. This combination tells me that this part of the world was fairly arid. So I’m going to places like modern Afghanistan, extreme western China, northern Turkey, or other places where there are somewhat arid climates with mountain belts today. Then I clone the mountains from there and put them in the map.

But you have to know the geologic background. You have to know how the mountains were formed, what the grain of the mountains was. That’s not always easy, although there are ways of doing it. To know the grain of the mountains, you need to know where the hinterland and the center of the mountains were. You need to know where the foreland area is, so that you can show the different styles of mountains. You have to move from foreland areas—which tends to be a series of parallel ridges, usually much lower than the hinterlands—to the center and beyond.

I use this kind of information to pick the right kind of modern mountain to put back in the Devonian, based on what that Devonian landscape probably had a good chance of looking like. Do we know for certain? Of course not. We weren’t around in the Devonian. But we have a good rock record and we have a lot of information; so we use that information and, then, voilà.

To give another example, let’s look at the Devonian period of the east coast. The big European continent that we call Baltica collided with Greenland and a series of micro-continents collided further south, all the way down at least as far as New Jersey, if not down as far the Carolinas. We know that there are places on Earth today where these same kinds of collisions are taking place—in the Alps and Mediterranean region, and the Caucasus region, and so forth.

We can use the concept that, if two plates are colliding today to produce the Caucasus mountains, and if we look at the style of mountains that the Caucasus are, then it’s reasonable to think that, where Greenland and Baltica collided in the Silurian and the Devonian, the mountains would have had a similar style. So we can map that.

This second sequence shows the continents drifting apart, in reverse, from 105 million years ago to 240 million years ago. They were mapped using the Mollweide projection, and, in all cases, are by Ron Blakey.



Manaugh: That collision alone—Baltica and Greenland—sounds like something that would be extremely difficult to map.

Blakey: Absolutely. And it’s not a one-to-one relationship. You have to look at the whole pattern of how the plates collided, how big the plates were, and so forth.

Then there’s the question of the different histories of particular plates. So, for example, most of Scotland started out as North America. Then, when all the continents collided to form Pangaea, the first collisions took place in the Silurian-Devonian and the final collisions took place in the Pennsylvanian-Permian. By, say, 250 million years ago, most of the continents were together. Then, when they started to split apart in the Triassic and Jurassic—especially in the Triassic and Cretaceous—the split occurred in such a way that what had been part of North America was actually captured, if you will, by Europe and taken over to become the British Isles.

Scotland and at least the northern half of Ireland were captured and began to drift with Europe. On the other hand, North America picked up Florida—which used to be part of Gondwana—and so forth.

One of the things that is interesting is the way that, when mountains come together and then finally break up, they usually don’t break up the same way that they came together. Sometimes they do, but it has to do with weaknesses, stress patterns, and things like this. Obviously, all time is extremely relative, but mountains don’t last that long. A given mountain range that’s been formed by a simple collision—not that there’s any such thing as a simple collision—once that collision is over with, 40 or 50 million years after that event, there is only low-lying landscape. It may have even have split apart already into a new ocean basin.

But here’s the important part: the structure that was created by that collision is still there, even though the mountains have been worn down. It’s like when you cut a piece of wood: the grain is still inherited from when that tree grew. The pattern of the grain still shows where the branches were, and the direction of the tree’s growth in response to wind and sun and its neighbors. You can’t reconstruct the tree exactly from its grain, but, if you’re an expert with wood, you should be able to look and say: here are the tree rings, and here’s a year where the tree grew fast, here’s a year where the tree grew slow, here’s where the tree grew branches, etc.

In a sense, as geologists, we’re doing the same things with rock structure. We can tell by the pattern of how the rocks are deformed which direction the forces came from. With mountains, you can tell the angle at which the plates collided. It’s usually very oblique. What that tends to do is complicate the geologic structure, because you not only get things moving one way, but you get things dragging the other way, as well. But we can usually tell the angle at which the plates hit.

Then, in many cases, based upon the nature of how the crust has been deformed and stacked up, we can tell the severity of the mountain range. It doesn’t necessarily mean that we can say: oh, this structure would have been a twenty-thousand-foot high mountain range. It’s not that simple at all, not least of which because rocks can deform pretty severely without making towering mountains.

This final of the three global sequences shows the continents drifting apart, in reverse, from 260 million years ago to 600 million years ago. There was still nearly 4 billion years of tectonic evolution prior to where these maps begin. They were mapped using the Mollweide projection, and, in all cases, are by Ron Blakey.



Manaugh: Are you able to project these same tectonic movements and geological processes into the future and show what the earth might look like in, say, 250 million years?

Blakey: I’ve had a number of people ask me about that, so I did make some global maps. I think I made six of them at about 50-million-year intervals. For the fifteen to 100-million-year range, I think you can say they are fairly realistic. But, once you get much past 75 to 100 million years, it starts to get really, really speculative. The plates do strange things. I’ll give you just a couple of quick examples.

The Atlantic Ocean opened in the beginning of the Jurassic. The actual opening probably started off the coasts of roughly what is now Connecticut down to the Carolinas. That’s where the first opening started. So the central part of the Atlantic was the first part to open up. It opened up reasonably simply—but, again, I’m using the word simple with caution here.

The north Atlantic, meanwhile, didn’t open up until about 60 to 50 million years ago. When it opened up, it did a bunch of strange things. The first opening took place between Britain and an offshore bank that’s mostly submerged, called Rockall. Rockall is out in the Atlantic Ocean, northwest of Ireland—near Iceland—but it’s continental crust. That splitting process went on for, let’s say, ten million years or so—I’m just going to talk in broad terms—as the ocean started opening up.

Then the whole thing jumped. A second opening began over between Greenland and North America, as Greenland and North America began to separate off. That lasted for a good 40 or 50 million years. That’s where you now get the Labrador Sea; that is actual ocean crust. So that was the Atlantic Ocean for thirty or forty million years—but then it jumped again, this time over between Greenland and what is now the west coast of Europe. It started opening up over there, before it jumped yet again. There’s an island in the middle of the North Atlantic, way the heck up there, called Jan Mayen. At one time, it was actually part of Greenland. The Atlantic opened between it and Greenland and then shifted to the other side and made its final opening.

The following two sequences show the evolution of Europe from an Antarctic archipelago to a tropical island chain to the present day Europe we know and recognize. The first sequence starts roughly 450 million years ago and continues to the Jurassic, 200 million years ago. All maps by Ron Blakey.



So it’s very complicated. And that’s just the Atlantic Ocean.

The Northern Atlantic took at least five different paths before the final path was established, and it’s all still changing. In fact, the south Atlantic is actually even worse; it’s an even bigger mess. You’ve got multiple openings between southwest Africa and Argentina, plus Antarctica was up in there before it pulled away to the south.

These complications are what makes this stuff so interesting. If we look at events that we can understand pretty well over the last, let’s say, 150 or 200 million years of time—where we have a good indication of where the oceans were because we still have ocean crusts of that age—then we can extrapolate from that back to past times when oceans were created and destroyed. We can follow the rules that are going on today to see all of the oddities and the exceptions and so forth.

These are the kinds of things I try to keep track of when I’m making these maps. I’m always asking: what do we know? Was it a simple pull-apart process? There are examples where continents started to split across from one another, then came back together, then re-split in a different spot later on. That’s not just speculation—there is geologic evidence for this in the rock record.

So, when it comes to extrapolating future geologies, things become very complicated very quickly. If you start thinking about the behavior of the north Atlantic, creating a projection based on what’s going on today seems, at first, like a fairly simple chore. North America is going on a northwesterly path at only one or two centimeters a year. Europe is moving away, at almost a right angle, at about another centimeter a year. So the Atlantic is only opening at three centimeters a year; it’s one of the slowest-opening oceans right now.

OK, fine—but what else is happening? The Caribbean is pushing up into the Atlantic and, off South America, there is the Scotia Arc. Both of those are growing. They’ve also identified what looks like a new island arc off the western Mediterranean region; that eventually would start to close the Atlantic in that area. Now you start to speculate: well, these arcs will start to grow, and they’ll start to eat into the oceans, and subduct the crusts, and so forth.

Again, for the first 50, 75, or even 100 million years, you can say that these particular movements are fairly likely. But, once you get past that, you can still use geologic principles, but you’re just speculating as to which way the continents are going to go.

For instance, the one continent that does not seem to be moving at all right now, relative to anything else, is Antarctica. It seems to be really fixed on the South Pole. That’s why some people think that everything will actually coagulate back towards the South Pole. However, there are also a bunch of subduction zones today along southern Asia, and those are pretty strong subduction zones. Those are the ones that created the big tsunami, and all the earthquakes off of Indonesia and so forth. Eventually, those could pull either parts of Antarctica or all of Antarctica up toward them.

But I’m more interested in reconstructing the past than I am the future, so I’ve only played around with those five or six maps.

This second sequence, showing the next phase in the evolution of Europe, begins approximately 150 million years ago and extends to the present day. All maps by Ron Blakey.



Manaugh: To ground things a bit, we’re having this conversation in Flagstaff, on the Colorado Plateau, which seems like a great place to teach geology. I wonder whether there might be another Colorado Plateau, so to speak, elsewhere in the world—something geologically similar to the extraordinary landscapes we see here that just hasn’t had the chance to emerge. Maybe the tectonics aren’t right, and it’s still just a crack, rather than a canyon, or maybe it’s covered in vegetation or ice so we can’t see it yet. Conversely, I’m curious if you might have found evidence of other great geological districts in the earth’s past—lost Grand Canyons, other Arches National Parks—that have been lost to time. How could we detect those, and where are they?

Blakey: This is indeed a great place to teach geology. It’s a great place to live.

As for Colorado Plateau analogs—it’s an interesting question. There’s an area in South America that I’d say is fairly similar. It’s got a couple of famous national parks that I can't remember the name of. It’s a smaller version, but it’s very similar to the Colorado Plateau. It’s between the Andes and the Amazon basin, part of the general pampas region there of South America. It even has similarly aged rocks. Parts of northern Africa would also be similar.

But you have to look at all the characteristics of the Plateau. Number one: the rocks are flat. Number two: the rocks have been uplifted. Number three: the rocks are dissected by a major river system. Number four: it’s a semi-arid climate. There are probably five or six defining characteristics in total, and I’ve heard many people say that there is no other place else on Earth that has all those characteristics in exactly the same way. But I went to an area in eastern Mauritania many years ago, where, for all the world, it looked like the Grand Canyon. It wasn’t as colorful, but it was a big, deep canyon.

In fact, the Appalachian Plateau would be somewhat similar, except it’s in a humid climate, which means the land has been shaped and formed differently. But the Appalachian plateau has flat-lying rocks; it’s dissected by some major rivers; it’s experienced uplift; and so forth.

The next two sequences of images, followed from left to right, top to bottom, illustrate the gradual evolution of the Colorado Plateau, where, in its modern day incarnation, this interview with Ron Blakey took place (specifically, in Flagstaff, Arizona. The earliest map included here depicts the Proterozoic; the first sequence ends in the Triassic. All maps by Ron Blakey.



Twilley: I’m interested in the representational challenges you face when you decide to make a map, and, specifically, when you’re in Photoshop, what your most-used tools might be. I thought it was fascinating when you said that the cloning tool really changed how you make geological maps. What other techniques are important to you, in order to represent geological histories?

Blakey: Oh, the cloning tool is the most important, by far—at least when I’m actually painting. Of course, I use the outline tool to select areas, but, when I’m actually painting, it would be impossible to paint these different maps pixel by pixel. I couldn’t do it. Occasionally, I will actually hand-draw some things in the flatlands, where I want to put a river system, for example, but, at least for mountains and rugged terrain, I clone everything.

Some times, I’ll cut and paste. I’ll select an area in the GeoMapApp, I save it as a JPEG, and then I can select it and copy it and paste it in, and I can rotate and deform it a little bit. Are you familiar with the warp tool in Photoshop? I use that a lot, because you can change the shape of mountains a little. If you do it too dramatically, it really looks flaky. But, if you do it right, it still looks pretty realistic.

This second sequence, also showing the evolution of the Colorado Plateau, begins with the Triassic and ends roughly 5 million years ago—basically the present day, in geological terms. All maps by Ron Blakey.



Twilley: And do you have certain filters you rely on for particular geological effects?

Blakey: A little bit. I like to use the craquelure filter. It actually gives you little bumps and valleys and so forth. I use that especially for continental margins. Continental margins are anything but regular slopes, going down to the abyssal depths. They’re very irregular. There are landslides and all kinds of things going on there at the margins, so I add a little texture with craquelure.

It can be difficult to use, though, and it doesn’t work at really high resolutions—so, what I actually have to do some times, is that I will actually copy a part of my map, take it out, make it smaller, do the craquelure on it, and then blow it back up and paste it in again.

A painting by Ron Blakey depicts a geological landscape near Sedona, Arizona.

Dee Blakey, Ron's Wife: I think the other reason that he can do what he does is that he paints. That’s one of his paintings, that one over there [gestures above fireplace].

Blakey: Well, I guess I should have said that right away, when you asked me why I got interested in this, because I am interested in the artistic aspect of geology. The artistic aspect of science, in general, but especially geology. Astronomy, for example, would be another field where artistic visualizations are useful—any time you’re trying to show things that can’t easily be visualized with something comparable here on present-day planet Earth, you have to use an artistic interpretation.

Anyway, I can’t explain it, but I understand color pretty well. I use the hue saturation tool a lot. I’ll select an area and then I’ll feather it, let’s say, because you don’t want the edges to be sharp. I’ll feather it by thirty, forty, fifty pixels. Then I'll take the slider for hue saturation, where, if you go to the left, you make things redder and, if you go to the right, you make things greener. If I’ve got a landscape that looks a little too humid, I’ll just slide it slightly to the left to make it a bit redder. You can also change the lightness and darkness when you do that. There’s also regular saturation. By killing the saturation, you can really kill the nature of a landscape quite a bit.

And I use hue saturation a lot. That took me a long time to master, because it’s really easy to screw things up with that tool. You start sliding things a little too far and, whoa—wait a minute! All of a sudden, you’ve got purple mountains.

Geoff Manaugh and Folkert Gorter at Superfamous HQ.

At the risk of seeming recursive, Venue stopped by Superfamous, the Los Angeles-based design studio behind our own graphic identity and website, to discuss the architecture of the Internet and the process of exploring and expanding its potential with Dutch interaction designer Folkert Gorter and developer Jon-Kyle Mohr.

As the co-founder of online networks and creative communities, such as Space Collective, Cargo, and but does it float, Gorter's perspective on the Internet is deeply influenced by the sixties-era counter-culture in which the early web's artist-engineers were immersed. The design projects he regularly features on but does it float—in addition to his own quite stunning photographs—often feature other-worldly landscapes, surreal geological forms, computer-generated geometries, and more, as if part of a visual quest to uncover the programming and code beneath the forms of the world, the frustratingly inaccessible HTML behind planets, continents, oceans, and skies.


Flickr gallery, Folkert Gorter.

Mohr, meanwhile, comes to programming from a lifelong background in drumming and sound art; he pointed out, after our interview, that he had more or less grown up inside a recording studio. Like Gorter's formal interest in extreme landscapes, Mohr's musical tastes veer toward patterns, mathematics, and code, finding unexpected polyrhythms through experiments with wires, electricity, and back-of-envelope calculations.

Our conversation ranged from psychedelic science fiction to scroll bars and the future of skeumorphism, all the while asking what it means to inhabit virtual space.


Space Collective, "a cross-media information and entertainment channel for post-ideological, non-partisan,
forward thinking terrestrials," was co-founded by filmmaker Rene Daalder and designer Folkert Gorter.


• • •


Folkert Gorter, Jon-Kyle Mohr, and Nicola Twilley at Superfamous HQ.

Geoff Manaugh: Folkert, we were joking on the way here about something you said in an interview once on Los Angeles, I’m Yours. Back in 1994, apparently, you had the realization that you were going to dedicate your life to the Internet.

Folkert Gorter: [laughter] I can’t believe you read that!

Manaugh: Where did that realization come from? What made you want to work in online design?

Gorter: I was at the School of Art, Media and Technology in Utrecht, one of the first schools in Europe that took the virtual, digital revolution kind of seriously—although it wasn’t a revolution yet, but its emergence. They brought in a lot of conceptual thinkers to talk about—well, it was not really the Internet back then. It was more like CD-ROMs, multiple-ending films, parallel storylines, and so on.

It was interactive thinking—where information technology meets interface design meets art and education. The more conceptually inclined people who were professors at these schools were almost psychedelic, I think. They came straight out of the sixties and seventies counterculture in California.


New posts gallery, Space Collective.

As interactive design went online, these people who I really identified with—these artist-engineers—were the ones who were asking how they could put their stuff online. And they started making art specifically for what was possible—the basic things that you could do in the rudimentary browsers at the time, like Shockwave and animated GIFs and trying to figure out how you can scroll more than the height of a browser to show more content.

I think that group of people, who first came to the Internet as artist-engineers, completely set the tone for what the web is now. For example, browser standards are totally based on what was being pushed back then, in terms of multimedia content.


Diagram showing the relationship between identifier, resource, and representation, from Architecture of the World Wide Web, Volume 1.

Nicola Twilley: Are you implying that the Internet could be quite different today, if different kinds of people had been experimenting with it at the start?

Gorter: Right. That’s what I think. Take, for example, blogging. I think blogging probably became popular simply because it became possible to scroll vertically in web pages.

Before blogging—before vertical scrolling—there was a 640-by-480 screen, and everything that didn’t fit had to go below the fold. That was a disaster, because people couldn’t scroll, which meant you had to make all sorts of new interface artifacts—“previous” and “next” buttons, page folding, and God knows what else—until people finally said, “Screw it. We need scroll bars.”

That’s why I call them artist-engineers, because they were making a medium that was able to carry what they wanted to express.

Of course, scroll bars already existed. They were carried over from all the other OS technologies like Windows, which is why they also get really high system priority—the mouse and scroll never lag because they’re driven directly by the operating system. It wasn’t that the concept of scrolling was new, but it was definitely one of the innovations that was necessary at the beginning of the web in order to push the amount of content that you could show on sites.


Scroll bar design, Chris Norström.

The scroll bar is a great device—I have always been most excited about it as my main user interface device. Way back, I started experimenting, along with a whole bunch of other people, with making scrolling interfaces. I would put up a ton of content, but you couldn’t see all of it. It was as if the browser was the viewfinder of a camera, and, instead of moving the viewfinder, you could just scroll the page.

Manaugh: Based on some of the images and quotations that you put on but does it float and Space Collective, from people like Timothy Leary and Terence McKenna, as well some of the things you’ve said in the past about wanting to see how human culture could move online, there seems to be an overlap between your interest in information technology and an almost psychedelic interest in things like the “Singularity.” I’m curious as to how those two strands weave together for you—if one led to the other.


Screengrab, Jon-Kyle Mohr.


Screengrab, Fluid simulation with Turing patterns, linked by Folkert Gorter.

Gorter: I’m really glad that you picked those things out. Those are the peaks of the landscape that I try to hang out in, pretty much. The web is a space of infinite potential, especially when I first met it, and it has not been charted. We can only go as far as our current interfaces and technologies let us go—in the same way that human language gives us a territory in which we can dwell—and it’s almost impossible to get outside of that.

I’m really excited about trying to make that space bigger—to create more land, as it were, the way the Dutch use ever more sophisticated technologies to pump out water and now we can live on the sea floor.

To bring that back to the psychedelia thing: for me, that feeling when you dive below or beyond or above language—when you’re in that zone—that is very much akin to being on the Internet. You can be somebody else. You don’t even have to be a human. You can speak using media.


Artwork by Anton van Dalen, posted to but does it float?.

Do you know the book Starmaker, by Olaf Stapledon? At one point, the narrator has evolved so far that he’s using the brains of different organisms as hosts. He’s sharing the minds of a flock of birds sitting on some mountainside, describing the amazing sensation of feeling an entire mountainside through a collective, distributed mind. He says—and I’m paraphrasing—that it was almost as though a blind race, through technology, could have invented organs of sight.

Manaugh: He was using the birds as a browser.

Gorter: Right. The Internet is a sensorium in the same way. Thinking about it as a biological, technological extension makes a lot of sense to me. What’s mainly interesting to me, at least right now, is that you don’t carry the limitations of the body with you in the virtual domain.

Twilley: So the limitations of this virtual world come from our interfaces—both the hardware and the software. Can you give some examples of things you’d like to do but can’t because of these kinds of technological limitations?

Jon-Kyle Mohr: Some of the stuff that we’re starting to explore right now is only possible because today’s browsers are capable of enabling it. Before, there were technological obstacles like latency. Latency is the bane of my existence. If you do something, you want to feel as though you’re affecting it, and not that there is a 15-millisecond lag—that there is latency. That’s what’s so great about your phone: you flick it and it responds immediately. It feels like you are actually manipulating it.

To give another example: right now, everything uses the metaphor of a page. We’ve been playing around with Z-space—that is, breaking out of the metaphor of a page and moving into three dimensions, the X, Y, and Z axes, but still within a browser. People have been playing around with how to represent three dimensions forever, but figuring out how to do that within the interaction history of the browser is particularly interesting.


Screengrab, gallery, Space Collective.


Artwork by Anton van Dalen, posted to but does it float?.

Gorter: Virtual reality has been the frontier forever, and people have thought about it as if you were walking into a big sphere or you were wearing goggles and all of that. But, to me, thinking about virtualizing ourselves is much more interesting if you think about expanding what is possible online.

True Names, by Vernor Vinge, is a really great book to read on this subject. He lays down a lot of amazing metaphors for inhabiting cyberspace.

I mention that because what we’re trying to do with a Z-space interface is reintroduce the whole notion of the peripheral. Part of it is to do with the Tumblr and Pinterest thing: all these people posting millions of images and the way that styles seem to emerge from that stream.

If we compare vertical scrolling in blogs to driving in your car in a landscape, what we want to do now is lift off and be able to see all these image feeds, for example, as geological strata. If you’re flying above the landscape at 30,000 feet, there’s stuff to see—stuff you can’t see from your car window. That’s how we want to enlarge or expand the interface.


Flickr gallery, Folkert Gorter.

What we’re talking about now is really more of an actual environment, in which everything you see informs how you see the things around it. That’s one thing we want to accomplish with this interface, so that when you’re looking at one visual, you can also see it as part of a pattern—you can see all of its connections.

Back in the early days of the Internet, these artist-engineers I was talking about pushed for browsers to be able to handle what they wanted to do. We still have that power. Whatever the W3C sets as its standards is just based on what people want. With the whole web 2.0 fiasco—let’s be honest—it’s as if people stopped really pushing new things, because everyone was just happy together, using Facebook and Twitter and pushing their shiny social buttons.

But we need to keep pushing new stuff. It’s a really delicate process, because if you push too far, then it’s going to be clunky and no one’s going to be able to use it; but, if you don’t push far enough, there’s not going to be any change and it will never catch on.


Folkert Gorter and Jon-Kyle Mohr at Superfamous HQ.

Mohr: It’s an accessibility thing. You have to make sure that you’re still innovating, but that you’re not excluding everybody from that innovation.

Gorter: Because if you’re excluding everybody, then there’s no critical mass.

Mohr: Degradation in digital design is also really interesting—it’s almost like time-travel, in a way. If you try to look at the Wired website on a browser that was last updated four years ago, it’s going to look like hieroglyphics.


Jon-Kyle Mohr working on a sound installation.

Manaugh: Jon-Kyle, you’ve done a lot of sound-related work. How does that relate to your online design?

Mohr: There’s a lot of overlap. A lot of sound design is just designing space, and directing the ear’s attention to certain things—how you use one rhythm to offset something else, for example. Then, all the looping and cloning translates to pagination and scrolling really well. It’s all math.



Gorter: I remember you saying that you credit being able to program to being a drummer.

Mohr: Totally. They’re both additive and subtractive processes. They use the same metaphors. They loop and repeat in similar ways. It’s actually kind of funny, because, ever since I started to do a lot of the programming with Cargo, it’s influenced how I perceive music now, as being much more programmatic.



Twilley: I love this idea of useful metaphors. If the browser is to be more than just a “window” and the web is to be made of more than just “pages,” where else might you go to find new metaphors that could expand what we can do online?

Mohr: Those are great questions. Skeumorphism was such a hot topic last year, and it was that exact same question, asking about the extent to which you need to be literal with your references versus the extent to which you can be more free and abstract.


Apple's skeumorphic calendar design, via.

Gorter: I think the way we get around this is that we try to not make a specific interface. Instead, we always use the content as the interface. This is how we always design. In Cargo, there’s no design, there’s just content. You click on a thumbnail, but the thumbnail is just a smaller representation of the project.

Essentially the browser is the canvas—it is the design—whereas, with a lot of web design, you see people making designs inside the browser, like a box inside a box, and then shading here, adding a bar there.

But we don’t do that. We try to disappear.

Twilley: You’ve described Cargo as not social but rather collaborative. That difference between closed and open, complete and unfinished, is really interesting. There are actually not a lot of middle spaces on the Internet that manage to straddle that division, whereas Cargo is populated by user content but still feels aesthetically coherent.

Gorter: I think, again, that’s because the design is the way the interface works, rather than being some kind of overlay.

Even if you completely disassociate your personal site from the platform, the brand is the interface. We care so much about the feel and the behavior of the interface—when you click something, something happens to bridge the waiting time between the click and the response, and the typography is always properly in proportion—that it still feels like Cargo, at the end of the day, no matter what it looks like.


Screengrab, gallery, Space Collective.

You’re in a structure, but the only things you see are content.

Twilley: Most of the time, when you enter a social network on the Internet, the structure is very visible. If you’re on Facebook, for example—

Gorter: Everything is a dull blue. [laughter]

Twilley: It seems to me that you could maybe split the Internet between broadcast and community. Those two different kinds of platforms have very different design aesthetics.


Screengrab, Cargo Collective gallery..

Gorter: I think that’s true. We are always trying to find out where we are, between those two poles.

We’re now working on something called trace-marking. It essentially started as favoriting images across the Cargo platform. It’s one of a few attempts we’ve made to go a bit more into the community direction. The thing about Cargo is that, although our community is definitely there, it’s built on people digging how we do stuff, then trusting us with their material.

We have implemented a few community things, though: you can follow people, and there’s internal commenting. We built that functionality for student networks that we’re now running with UCLA and Art Center College of Design, and a few other places.

This new trace-marking thing is a way to visually connect. If you see an image you really like, you can save it in your own space and you can create categories for how you want to save it—whether it’s for reference or simply to tell somebody that you love their image. It becomes a visual collection tool mixed with a book-marking functionality.


Tableau De L'Histoire Universelle depuis la Creation jusqu'à ce jour, 1858, posted at Bibliodyssey, posted to but does it float?.

But this is really early days. We always let the process determine the outcome. Today, Jon-Kyle made the first steps: you drag an image, a little shelf opens up, you put it there… So now we have to figure out: what’s next?

Twilley: It seems as though images are the quickest thing to get detached from their source online.

Gorter: Exactly. That’s always bothered me! Tumblr does a great job of showing the thread of reblogs, but then no one gives a fuck about who made the original image. Creating that kind of trace for images is important.

Manaugh: Our final question, just to bring it full circle, is about the process of working on the Venue website, and whether that allowed you to explore any new territory. Perhaps it did, perhaps it didn’t.

Mohr: The integration with Google Maps for Venue was really fun. I had never used their API. We’re actually starting to work on an API for Cargo, and working with Google Maps’ API for Venue really influenced how I’m approaching that.

It was also really fun to play with spatiality. Google Maps is already interesting in terms of its Z-space functionality—the way that you can zoom in and out in satellite view—and we spent a long time playing around to find a comfortable zoom level for Venue, and so on.


Screengrab, Jon-Kyle Mohr.

Gorter: It was a great project for us, I think, because we’re always looking for excuses to extend Cargo’s functionality. The only reason we make new stuff for Cargo is in response to a specific request. We never say, “Hypothetically, people would love such-and-such new feature—let’s make it!”

And, because we don’t design websites—we don’t make layouts, we just put content in—the Google Maps integration is not simply decoration. It’s actually integral to how the site works. What I really love about what we accomplished was that we put the Google Maps in there, but we imposed the Venue aesthetic over top of it.

We’ve done projects with Flash before where we work the same way. The problem with Flash is that it’s like an aquarium—all the content sits behind a thick layer of glass. You can’t touch it; you can only look at it. It’s imprisoned. What we've done is use Flash in a new kind of way, as a background environment, and then put a flat HTML layer over top of it so that you can interact with as if you were interacting with any website.

Now, if you guys do another iteration of Venue, we can imagine even more integration. Come back in 2014, and we’ll talk!

The thumbnail image used for this interview on Venue's "Explore" page was taken by Jonas Mlynek, ETH Zurich, courtesy of National Geographic.
"Gradually, America's management of its wild animals has evolved, or maybe devolved, into a surreal kind of performance art," reflects Jon Mooallem, author of Wild Ones: A Sometimes Dismaying, Weirdly Reassuring Story About Looking at People Looking at Animals in America.


Detail from the cover of Jon Mooallem's Wild Ones.

This is a surprisingly generous statement, considering that Mooallem has spent the last few years researching a harrowing litany of accidental extinctions and unintended consequences—including a surreal day spent chasing ex-convict Martha Stewart as she and her film crew pursued polar bears across the Arctic tundra—in order to untangle the complicated legal and emotional forces that shape America's relationship with wildlife.

Despite the humor, the stakes are high: half the world's nine million species are expected to be extinct by the end of this century, and, as Mooallem explains, many of those that do survive will only hang on as a result of humans' own increasingly bizarre interventions, blurring the line between conservation and domestication to the point of meaninglessness.

On a foggy morning in San Francisco, Venue met Mooallem for coffee and a conversation that ranged from tortoise kidnappings to polar bear politics. An edited transcript of our conversation follows.

• • •

The polar bear tourism industry in Churchill, Manitoba, relies on a dozen specially built vehicles called Tundra Buggies that take tourists and their cameras out to see the world's southernmost bear population. Photo: Polar Bears International.

Geoff Manaugh: In the book, you’ve chosen to focus on two very charismatic, photogenic, and popular animals: the whooping crane and the polar bear.

Jon Mooallem: They’re the celebrities of the wildlife world.

Manaugh: Exactly. But there’s a third example, in the middle section of the book, which is a butterfly. It’s not only a very obscure species in its own right, but it’s also found only in a very obscure Bay Area preserve that most people, even in Northern California, have never heard of. What was it about the story of that butterfly, in particular, that made you want to tell it?

Mooallem: I thought it would be really interesting to go from the polar bear, which is the mega-celebrity of the animal kingdom, to its complete opposite—to something no one really cared about—and to see what was at stake in a story where the general public doesn’t really care about the animal in question at all. It turned out that there was a hell of a lot at stake for the people working on that butterfly.


Lange's Metalmark butterfly (Apodemia mormo langei). Photo: U.S. Fish & Wildlife Service.

It’s called the Lange’s Metalmark butterfly, and it’s about the size of a quarter. As you said, it only lives in this one place called Antioch Dunes, which is about sixty-seven acres in total. It is surrounded by a waste-transfer station, a sewage treatment plant, and a biker bar, and there’s a gypsum factory right in the middle that makes wallboard. You can’t even walk across the preserve, actually, because of this giant industrial facility in the middle of it.

In fact, the outbuilding where Jaycee Dugard, the kidnapping victim, was held is just round the corner.


Counting butterflies at Antioch Dunes. Photo: Jon Mooallem

It’s a forgotten place. It’s not the sort of place you’d expect to spend a lot of time in if you’re writing a book about wildlife in America.

On top of all that, not only is the butterfly the animal in the book that people won’t have heard of, or that they won’t know much about, but it’s also the one that I didn’t know very much about, going in. Looking back on it, it was somewhat audacious to say in my book proposal that a third of the book was going to be the story of this butterfly, because I really knew almost nothing about it! But it ended up being by far the most fascinating story, for me. That’s at least partly because I had the sense that I was looking at things that no one had ever looked at and talking to people who no one had ever talked to before.



Jana Johnson leads a captive breeding project for the Lange's Metalmark from inside America's Teaching Zoo, where students in Moorpark College's Exotic Animal Training and Management degree program learn their trade. Photos: (top) Jason Redmond, Ventura County Star; (bottom) Louis Terrazzas, U.S. Fish & Wildlife Service.

It also seemed as though, when you’re working in an environment like that on a species that doesn’t get a lot of support or interest, you’re confronting a lot of the fundamental questions of environmentalism in a much more dramatic way. You have to work harder to sort through them, because it’s difficult to make simple assumptions about what you’re doing—that what you’re doing is worthwhile and good—when you don’t have anyone telling you that, and when it looks as hopeless as it looks with the Lange’s Metalmark.

Maybe hopeless is too strong a word—but you can’t transpose romantic ideas about wilderness and animals onto the situation, because it’s just so glaringly unromantic. You can’t stand in Antioch Dunes and take a deep breath of fresh air and feel like you’re in some primordial wilderness. You don’t have that luxury.

The other thing that was interesting about the butterfly story was the fact that it was happening on such a small scale. The butterfly’s always just lived in this one spot—it’s the only place it lives on earth—so you could look at what happened to this small patch of land over a hundred years and meet all the people who came in & out of the butterfly’s story. It was quite self-contained. It was almost like a stage for a play to happen on.


Butterflies on display in cases at the Carnegie Museum of Natural History. Photo: Venue.

Manaugh: Harry Lange, for whom the butterfly is named, has a great line that seems to sum up so much of the sadness and stupidity in the human relationship with wild animals. He said, after exterminating the very last of the Xerces Blue butterfly: “I always thought there would be more…”

Mooallem: Right—and that was the other extraordinary thing about the butterfly story.

When I started working on the book, I had no idea about the history of butterfly collectors in the Bay Area. Apparently, the Bay Area was a big hotspot for butterflies, because of the microclimates here. It can be ten or fifteen degrees hotter in the Mission District than it is at the beach; there can be fog in some places and not others; and all of this creates a sort of Galapagos Island effect. The whole peninsula is peppered with these different micro-populations of butterflies because of the different microclimates.

Meanwhile, in the early twentieth century, at a time when the Audubon Society and other groups were being founded and there was a turn against the overhunting of species, it still seemed OK and sort of benign to collect butterflies. It wasn’t considered “hunting.” You could transfer all of that ambition to conquer nature and discover new things to collecting butterflies. You’re here at the very end of North America, where the country finally runs out of room, and now you’re starting to run out of animals too, but there were still enough butterflies to collect and name after yourself.


The Xerces Blue is the first butterfly in America known to have gone extinct due to human disturbance. Photo: Andrew Warren/butterfliesofamerica.com

The story of Xerces Blue, which is the butterfly that Lange thought there would always be more of, is just incredible. Back then, past 19th Avenue, it was all sand dunes. I actually met a friend of Lange’s, named Ed Ross, who was a curator at the California Academy of Sciences; he had to be in his late eighties or early nineties.

He told me about growing up as a kid here and taking the streetcar out to 19th Avenue and just getting out with his butterfly net and walking to Ocean Beach over the dunes. Occasionally you’d see a hermit, he said.


Richmond Sand Dunes (1890s). Photo: Greg Gaar Collection, San Francisco, CA, via FoundSF.


Dunes along Sunset Boulevard, San Francisco (1938). Photo: Harrison Ryker, via David Rumsey Map Collection.

That generation of butterfly nuts who were living in San Francisco in the early twentieth century saw that habitat being erased in front of their eyes.

That backstory really helped to shape my perception of a lot of things in the book by elongating the timescale. It brought up the whole idea of shifting baselines—this gradual, generational change in our accepted norm for the environment—and all these other, deeper questions that wouldn’t have come up if I’d just followed Martha Stewart around filming polar bears, as I do in the first section of the book. It’s a very different experience to zoom out and take in the entirety of a story as I did with the Lange’s Metalmark, which is why I think I enjoyed it so much.

Nicola Twilley: It’s interesting to note that Ed Ross doesn’t actually figure in the book, and that, elsewhere, you allude to several intriguing stories in just a sentence or two—to things like the volunteers who count fish at the Bonneville Dam. Instead, you deliberately keep the focus on the bear, the butterfly, and the bird. But what about all the animals or all the stories that didn’t make it into the book? Were there any particular gems that you had to leave out or that you wish you had kept?

Mooallem: There were tons! The fish counting thing is a perfect example.


Janet the fish counter, hard at work. Photo: Jon Mooallem.

I spent a day at the Bonneville Dam, and it was completely surreal. I barely touch on it in the book, but the question of how to get fish around the dam is a really interesting design problem. There have been different structures that were built and then shown not to work, and so they’ve had to adapt them or retrofit them, and that’s ended up creating all new problems that need to have something built to solve them, and so on.

The government has actually moved an entire colony of seabirds that were eating the fish at the mouth of the river. The fish that got through the dam would get to the mouth of the Columbia River, but then the double-crested cormorants would eat them all. So the government picked up the birds and moved them to another island in the river.

I felt as though, normally, when you hear about these kinds of stories, you just scratch the surface. We’re so used to hearing endangered species stories in very two-dimensional, heroic ways, where so-and-so is saving the frog or whatever, and I just knew that it couldn’t be that easy. If it was that straightforward—if you could just go out and pull up some weeds and the butterfly would survive—it wouldn’t be very meaningful work. That was the space I really wanted to get into—the muddiness where things don’t work out the way we draw them on paper.

At the same time, I was able to mention a lot of these bizarre stories—but, as you say, almost as an aside. Each one of those things could have been a much longer, deeper story. Take, for example, the “otter-free zone,” which was this incredible saga: the government was reintroducing otters in Southern California and, because of complaints from fishermen and the oil industry, they needed to control where the otters would swim. A biologist would have to go out in a boat with binoculars to look for otters that were inside the otter-free zone and, if he saw them, he’d have to try to capture them when they were sleeping and move them. It was just a hilarious, miserable failure. I spent a lot of time reporting on that—talking to the biologist and hearing what that work was actually like to have to do—yet, in the end, I only mention it. But I know there’s a deeper story there.


Sea-otter in Morro Bay, California, just north of the former otter-free zone. Photo: Mike Baird.

In fact, there’s a section of the book where I rattle off a bunch of these examples—there’s the project to keep right whales from swimming into the path of natural gas tankers, and there’s the North Carolina wolves and their kill-switch collars, and so on. Each one of those is its own Bonneville Dam story—its own complicated saga of solutions and newer solutions to problems that the original solutions caused. You could really get lost in that stuff. I did get lost in all that stuff for a long time.

This is my first book, of course, and I feel as though that’s the joy and the luxury of a book—that you do have the time and space to get lost in those things for a little while.

Manaugh: It’s funny how many of those kinds of stories there are. I remember an example that Liam Young, an architect based in London, told me. He spent some time studying the Galapagos Islands, and he told me this incredible anecdote about hunters shooting wild goats, Sarah Palin-style, from helicopters, because the goats had been eating the same plants that the tortoises depended on.


BBC Four footage of the Galapagos Island goat killers.

But, at one point, some local fishermen were protesting that the islands’ incredibly strict eco-regulations were destroying their livelihood, so they took a bunch of tortoises hostage. What was funny, though, is that all the headlines about this mention the tortoises—but, when you read down to paragraph five or six, it also mentions that something like nineteen scientists were also being held hostage. [laughter] It was as if the human hostages weren’t even worth mentioning.

Mooallem: [laughs] Wow. That reminds me of one story I saw but never followed up on, about some fishermen in the Solomon Islands who had slaughtered several hundred dolphins because some environmental group had promised them money not to fish, but then didn’t deliver the money.

Twilley: When you invest an animal with that much symbolic power, the stakes get absurdly high.

Mooallem: Exactly—look at the polar bear. Of course, the polar bear has lost a lot of its cachet. I don’t know whether you saw the YouTube video that Obama put out to accompany his big climate speech in June, but I was surprised: there wasn’t a single polar bear image in it. It was all floods and storms and dried-up corn. Four years ago, there would have definitely been polar bears in that video.

Today, though, the polar bear is just not as potent a symbol. It’s become too political. It doesn’t really resonate with environmentalists anymore and it ticks off everyone else. What’s amazing is that it’s just a freaking bear, yet it’s become as divisive a figure as Rush Limbaugh.



From "Addressing the threat of Climate Change," a video posted on the White House YouTube channel, June 22, 2013.

Manaugh: Speaking of politics, it feels at times as if the Endangered Species Act—that specific piece of legislation—serves as the plot generator for much of your book. Its effects, both intended and surreally unanticipated, make it a central part of Wild Ones.

Mooallem: It really does generate all the action, because it institutionalizes these well-meaning sentiments, and it makes money and federal employees available to act on them. It amps up the scale of everything.

The first thing that I found really interesting is the way in which the law was passed. It was pretty poorly understood by everyone who voted on it. The Nixon administration saw it as a feel-good thing. It was signed in the doldrums between Christmas and New Year’s, almost as a gift to the nation and a kind of national New Year’s resolution rolled into one. And it was passed in 1973, as well, during both Vietnam and Watergate, so the timing was perfect for something warm and fuzzy as a distraction.

But most people never read the law and they didn’t realize that some of the more hardcore environmentalist staff-members of certain congressmen had put in provisions that were a lot more far-reaching than any of the lawmakers imagined. Nixon didn’t understand that it would protect insects, for example. It was really just seen as protecting charismatic national symbols, in completely unspecified, abstract ways.


Nixon signing the Endangered Species Act. AP photo via Politico.

In the preamble to the law itself—I don’t remember the exact quote—it says something like: “We’re going to protect species and their ecosystems from extinction as a consequence of the economic development of the nation.” Passing a law that is supposed to put a check on the development and growth of the nation—all the things government is supposed to promote—is pretty astounding.

Obviously, the law’s done a tremendous amount of good, but I also think that, because of its almost back-room origins, there is a kind of sheepishness and reluctance among a lot of conservationists to draw on it to its full extent. I don’t spend a lot of time in the book on government policy, but, to get a little wonky for a second, I do find it interesting that there’s this hesitancy to really use the Endangered Species Act as a cudgel.

Groups like Center for Biological Diversity that basically spend their time suing the government to hold it to the letter of the Endangered Species Act, are quite controversial among other environmentalists for that very reason. There’s a feeling that it is too dangerous to really unleash the full power of the law. In some ways, I completely understand that, because there is no way to work these questions out. It’s not a zero sum game.

But the Endangered Species Act is always under attack. It’s always a political talking point to be able to say: we’re spending hundreds of thousands of taxpayer dollars to study slugs or whatever.

Twilley: Then there’s the fact that it’s written so as to protect entire ecosystems, rather than just the animals themselves.

Mooallem: Exactly. To me, that’s actually the even more interesting part of this. Rudi Mattoni, the lepidopterist, pointed this out to me, and it’s why he became so disillusioned with the butterfly preservation work he was doing. The law says that it is supposed to protect endangered species and the ecosystems that they depend on. He and a lot of other people feel that the approach has been completely centered on species themselves at the expense of the larger ecosystem.

Even before the Lange’s Metalmark was listed as endangered, the Antioch Dunes ecosystem had been unraveling for decades. It was already pretty much destroyed. But, using the power of the Endangered Species Act, using the power of the federal government, and using a Fish & Wildlife Service employee whose job is just pulling weeds and keeping the plants that the butterfly needs in place, we’ve been able to maintain the butterfly there, in a place where it doesn’t really belong anymore because the landscape has changed so much.

I guess you could say that one of the weaknesses of the law—or you could say that’s actually the strength of the law, because it has protected a species from extinction even long after it should have been extinct, at least in an ecological sense. But it does bring up questions about what we are actually trying to accomplish.


Churchill's "polar bear jail," where bears that come into town are kept in one of twenty-eight cells, and held without food for up to a month so that they don't associate human settlements with a food reward. Photo: Bob and Carol Pinjarra.


At the end of its "sentence," if the Hudson Bay still hasn't frozen over, the bear is drugged and airlifted by helicopter to be released north of town, closer to where the ice first forms. Photo: Nick Miroff, via Jon Mooallem.

Manaugh: Preservation of an entire ecosystem, if you were to follow the letter of the law, would require an absolutely astonishing level of commitment. Saving the polar bear, in that sense, means that we’d have to restore the atmosphere to a certain level of carbon dioxide, and reverse Arctic melting, which might mean reforesting the Amazon or cutting our greenhouse gas emissions to virtually nothing, overnight. It’s inspiringly ambitious.

Mooallem: As I try to explain in the book, that’s basically why the polar bear became so famous, for lack of a better word. It became an icon of climate change, because in a shrewd, “gotcha” kind of way, the Center for Biological Diversity and other environmentalists chose the polar bear as their tool to try to use the Endangered Species Act to put pressure on the Bush administration to deal with climate change as a much larger problem.

Even though the environmental groups themselves admitted it was very unlikely that this would work, they were trying to make the case that the polar bear is endangered, that the thing that is endangering it is climate change, and that the government is legally compelled by the Endangered Species Act to deal with this threat to an Endangered Species. So, if you accept that the polar bear is endangered, then you have to accept the larger responsibility of dealing with climate change.

It’s a completely back-door way to try to force the government to act on climate change, but the result was that the polar bear ended up with this superstar status and popular recognition among the general public, which I found amazing.


The not-sufficiently-charismatic Kittlitz's Murrelet. Photo: Glen Tepke, National Audubon Society.

What’s also interesting is that the Center for Biological Diversity had actually tried this tactic once before, using a bird called the Kittlitz’s Murrelet, and it completely failed. There’s this thing called the “warranted but precluded” category of the Endangered Species Act, which is basically a loophole.

If a species is endangered but the Fish & Wildlife Service or another agency feels that they can’t deal with it right now, they can just say, “Yes, we agree that this species is endangered, so we’re going to put it in a waiting room called ‘warranted but precluded,’ and we’ll get to it as soon as we’re done cleaning up this other mess.” Because there are so many species that are endangered and the threats keep escalating, the government has been able to shunt species after species onto that “warranted but precluded” list.

When the Center for Biological Diversity and a few other groups tried to pressure the administration to do something about climate change by getting the Kittlitz’s Murrelet listed as an Endangered Species, the government just used the “warranted but precluded” loophole, which also meant they didn’t have to rule on climate science or make any really difficult decisions.

But the Kittlitz’s Murrelet failed to inspire any kind of public support, so there was no pressure on the administration to do anything. The environmentalists who were petitioning to get the polar bear listed as part of their strategy to deal with climate change knew that the government could very easily apply the same loophole to the bear and duck the whole issue of climate science, again.


During the public comment period preceding the polar bear's accession to Endangered Species status, Secretary of the Interior Dirk Kempthorne received half a million letters and postcards, many of which were from children. Via Jon Mooallem.

The Center for Biological Diversity realized that they needed a public relations strategy as well as a legal strategy, and, by picking the polar bear, they knew that they could put the Bush administration on the spot. The Bush administration couldn’t just put the polar bear in this infinite waiting room, because people would be upset.

Kids started writing letters to the Secretary of the Interior begging him to save the polar bear. They were sending in their own hand-drawn pictures of bears, drowning.


A 2007 letter from a child to Dirk Kempthorne included this drawing of a drowning polar bear being eaten simultaneously by a shark and a lobster. Via Jon Mooallem.

In some ways, the premise of the book is that our emotions and imaginations about these animals dictates their ability to survive in the real world, and this story was a particularly fascinating—not to mention peculiar—example in which all this sentimental gushing over polar bears, which, on the face of it, seems mawkish and kind of silly, was the lynchpin in a legal proceeding. In that case, our emotions about this animal really did matter.

Of course, there’s a whole other part of the story where the administration got around it anyway. But, for a while, it mattered.

Twilley: In the book, you encounter a whole range of attitudes that people hold toward wild animals and conservation, and the journeys that they take from idealism to pragmatism to cynicism and despair. There’s William Temple Hornaday, for example, who gets ever more ambitious and optimistic, and who goes from being a taxidermist who hunted buffalo to founding the National Zoo, and then on to a project to restock the Great Plains.


Manikin for Male American Bison, Hornaday (1891), via Hanna Rose Schell; Hornaday's innovative taxidermy "Buffalo Group," originally displayed at the U.S. National Museum (now the Smithsonian), and since relocated to Fort Benton, Montana (photo: Pete and the Wonder Egg).

Then there’s Rudi Mattoni, the lepidopterist you were talking about, who starts out as a pioneer of captive breeding and reintroduction, and then gives up and moves to Buenos Aires to catalog plants and animals so that at least we will have a record of what we’ve destroyed. Through the process of visiting all these places and spending time talking with all these people, did your own attitude toward wild animals and conservation evolve or shift at all?

Mooallem: What was great about writing the book was being able to absorb all these different perspectives. I met all these different people, some of whom are incredibly jaded and some of whom are incredibly idealistic, but, when you step back, you see that, as a species, we’re all in this struggle together, and this incredibly diverse group of people are all doing their best to grab hold of some piece of it and try to solve it.

That was where the “weirdly reassuring” part of my book title came from—from looking at conservationists as a breed, rather than just an individual person. If I had just written a book about the many, many old, battle-scarred conservationists who are extremely bitter and who claim to have given up, I think I would have ended up being really depressed. I think that it’s important to remember that there are people at all different points on that spectrum of idealism and disillusionment and they all serve a purpose. I identified with all of them, and that kept me from identifying too strongly with any one of them.


William Temple Hornaday's table of wild animal intelligence. Via Jon Mooallem.

I wasn’t trying to advocate any particular position or solve any problems with this book. I actually didn’t realize this till the end, but what I was really doing was just trying to figure out how you’re supposed to feel about all this. How should you feel and respond when you look at everything that’s going on with the environment? What I tried to do is collect the attitudes and emotions of the people that I met and than to take what was useful.

I would get off the phone, for instance, with someone like Mattoni and he would be so horribly pessimistic about everything, yet somehow I would feel slightly exhilarated by it. Here’s someone who is so close to these questions—really big questions about what the place of humans on earth should be—and he’s just totally beaten down by them. But he’s in contact with them. He’s living in engagement with those kinds of questions, and there was something beautiful about that. It doesn’t necessarily make me hopeful, but it does make me feel reassured in some way.

People who haven’t read the book keep asking me, “What’s so weirdly reassuring about it?” And I don’t really know how to explain it. In the book, I just try to recreate the experience that I went through, so that, hopefully, when people get to the end of the book they can have gone through the same range of emotions, so that they also feel weirdly reassured.

Manaugh: As far as the human attitude to wildness goes, I think the role of the child is a fascinating subplot. The idea of the wild, feral child is both fascinating and terrifying in popular culture—I’m thinking of Werner Herzog’s newly restored movie about Kasper Hauser, for example, or about recent newspaper articles in the UK expressing fear about "feral children” starting riots in the streets. It seems like humans want to make children as domesticated as possible, as fast as possible, and that, in a sense, the role of education and acculturation is exactly the task of de-wilding human animals.

Mooallem: I don’t know: among certain people in America right now, it seems as though it’s almost going the other way, that there’s a kind of romanticization of kids as a noble, unspoiled embodiment of nature. We haven’t ruined them yet. That sentiment seems to be actually in opposition to this idea that anything that’s animal-like about a kid is not human.

What was interesting to me is that we surround our kids with all these animal images and stuffed lions and bears and so on, yet no one’s ever really looked at how children conceive of wild animals. We have a lot of research about how a kid might think about their family’s pet dog, for instance, but how does that kid think about a panda bear that they’ll never see?


Rufus, the polar bear rocking horse, by Maclaren Nursery.

There was one set of studies done in the 1970s that interviewed a lot of grade school kids about how they thought about wildlife, and the answers were pretty much exactly the opposite of what we like to imagine. The older kids get, the more compassionate they feel toward the wild animals. The younger kids were just horrified and scared and felt very threatened by the animals—which makes perfect sense, of course, because they’re helpless little kids.

In many ways, that’s actually the more “wild” response: the kids are behaving like animals, in the sense that they’re only looking out for their own interests.

I thought that was really funny, in fact, because the whole book came out of a very genuine feeling that it’s really sad that my daughter is going to grow up in a world without polar bears, and, at the same time, a complete inability to understand why that should be so or to rationalize that feeling. After all, she doesn’t interact with polar bears now. Why should she care about polar bears? I think part of that originally inexplicable sense of sadness comes from a romantic place where we want to see children and wild animals as part of the same culture—a culture that’s not us.

Manaugh: What’s interesting, I suppose, with the children, is that we want a kind of animal-like, wild innocence, but only until they reach a certain age.

Mooallem: That actually mirrors this cycle that I write about with a lot of wildlife where we love wild animals when they are helpless and they don’t threaten us, but then we vilify them when they inconvenience us or aren’t under our control.

My daughter is about to turn five, and I’m really glad she doesn’t bite me any more when she gets angry! At the same time, it fills me with a very profound joy when I see her stalking a butterfly on Bernal Hill, because somehow I want her to be connected to that more pure idea of nature. I think that we love wildness and we love that kind of animal nature when it doesn’t inconvenience us—when it’s not biting us in the leg.


California Department of Fish and Wildlife shot three tranquilizer darts into this celebrity mountain lion, found in a Glendale-area backyard, before removing it to Angeles National Forest. Photo: NBC4.

There’s this study in Los Angeles that showed that when there were almost no mountain lions left, people would celebrate them as a part of their natural heritage—the good wild—but then, when mountain lion populations made a bit of a comeback and the lions started intruding into the city and eating pet dogs, people’s attitudes changed and mountain lions were seen as vicious murderers—the bad wild. There is a kind of fickleness: we want it both ways.

In the book, I quote Holly Doremus, who is a brilliant legal scholar based here in Berkeley, who says that we’ve never really decided—or maybe even asked—how much wild nature we need and how much we can accept.

Twilley: What that question brings up to me, too, is the idea of an appropriate context for wildness. One of Rudi Mattoni’s first projects was breeding the Palos Verdes blue butterfly, which was thought to be extinct after its last habitat was covered by a baseball diamond, but was then rediscovered in a field of underground fuel tanks owned by the Department of Defense. I was curious about both the idea of control and the idea of pristine nature, and how both concepts are embedded in our assumptions about wildness.

Mooallem: Right. Pigeons are wild—but they annoy us. Cockroaches are wild. We don’t romanticize or preserve the wild animals that live alongside us and invade spaces that we think of as ours—we exterminate them.

As far as control goes, we want to have our cake and eat it, too. We want something that has nothing to do with us—something that has free rein and that can surprise us and thrill us—but we only want the positive side of that equation. We don’t want the wolves eating our cattle or the sea otters getting in the way of the fishermen. That’s certainly behind some of the extreme lengths we go to in order to create the right context for the animals and to keep them within a certain area that we’ve decided is appropriate for them.

The point of the book is that we’re only going to see more and more examples like the Palos Verde blue and the Lange’s Metalmark, where the last hope for a species is in a seemingly hopeless place. There are only going to be more industrial landscapes—it’s unavoidable. Travis Longcore, who is an urban conservation scientist that I spoke with for the book, makes a really good point, which is that we have to get away from what he calls Biblical thinking—that you’re either in the Garden of Eden or the entire world is fallen. He heads the organization that’s behind a lot of the Antioch Dunes butterfly recovery, and he makes a point of trying to celebrate the wildness of places that make most of us feel queasy.

I think that’s important—I’m not suggesting that we give up on the romantic idea of the places that do seem “pristine,” but I think that we need to be a little more flexible and we need to find the joy and the beauty in those other sorts of places, too.

Twilley: You chose to start the epilogue with a story that seems emblematic: the “species in a bucket” story. What about that story summed up these complex themes you were tackling in the book?

Mooallem: The “species in a bucket” story is about a fish biologist named Phil Pister and a little species of fish called the Owens pupfish. Back in the 1960s, in the Owens Valley, Phil Pister was part of the group who had rediscovered the Owens pupfish—it had been presumed extinct, but he found it living in a desert spring.


Owens Valley pupfish. Photo: UC Davis; Phil Pister in front of the BLM Springs where the fish still flourishes today. Photo: Chris Norment.

One summer—I think it was 1964—there was a drought, and this one desert spring where the fish lived was drying up. Pister ran out there with some of his California Department of Fish & Wildlife buddies, and they moved the fish to a different part of the spring where the water was flowing a little bit better and the fish would have more oxygen.

He sent everyone home thinking it was a job well done, but then, after nightfall, he realized that it wasn’t working. Scores of fish were floating belly up. So he made a snap decision. He got some buckets from his truck, he put all the fish he could into the buckets, he carried them back to his truck, and he drove them across the desert to this other spring where he knew the water was deeper and that they’d survive.

I was drawn to that story because I heard it a few different times and, originally, to be honest, I just didn’t think it was true. It sounded like this almost Biblical, heroic story of a man alone in the desert—and it was always told to me in that way, too. People stressed how miraculous it was and how noble he was, carrying these two buckets full of fish across the desert to save the species. It was almost too perfect of a metaphor—here we are with the fate of all these species in our hands—but it also turned out to be true. I actually went down to Bishop to meet Phil, and he’s a phenomenal guy.

I thought that story should start the epilogue for two reasons. In part, I liked the story for all the same reasons that I thought it wasn’t true—there’s this timelessness to it. A lot of the book is about adding layer after layer of complexity, so the reader feels less and less certainty. It’s not a book that moves toward an answer—it’s more of a book that unravels all the answers that we thought we already knew. So there was something really refreshing and absolving to just take it back to this one man with a bucket, saving a species.

The other reason is that I thought it was a good illustration of this human compulsion to help, which is the underlying driver of so many of the stories in the book. There was something really nice about Phil’s story, in that it didn’t even strike him as that remarkable at the time. Later it did, of course, and he’s written about it, pretty eloquently. But I thought his story got at the fact that we just can’t not do this sort of thing. We can’t not try to solve a problem when it’s in front of us. I found that there’s a real dignity in that.

Even the people I met who were the harshest critics of Endangered Species preservation wanted to help—they just thought the way it was being done was ridiculous or that the politics are ridiculous.


Brooke Pennypacker in costume, with the juvenile whooping cranes. Photo: Operation Migration.


Chairs set up for "craniacs" hoping to witness an Operation Migration flyover, Gilchrist County, Florida. Photo: Jon Mooallem.

Take, for example, all these people up and down Operation Migration’s route who donate their property to let the pilots stay on their land with the whooping cranes. They’re not people that you would think of as environmentalists, but they’re really grateful for this opportunity to help—there’s no red tape, there’s no government surveyor coming in to check their land for endangered species, just a simple way to make a difference for this one species.

I also liked the idea of pairing Phil Pister’s story with Brooke Pennypacker, one of the Operation Migration pilots. For Brooke, this is not a one-night-with-a-bucket deal: he flies a little plane in a bird costume in front of whooping cranes for five months of the year, and then he migrates back with them on land. His whole life is given up to this effort, for the foreseeable future. It’s not a simple problem he’s trying to solve. I found him on a pig farm, where he’d been exiled due to bureaucratic squabbling, and he had FAA inspectors coming to check out his plane. He was just beset by complexity and he was so in touch with the potential futility of it all. He was willing to accept that maybe everything he’s doing isn’t going to make a difference.


Juvenile whooping cranes getting acquainted with the microlight, pre-migration. Photo: Doug Pellerin, via Operation Migration.

That’s the complete opposite of Phil Pister walking across the desert just thinking that all he has to do is move these fish over here and they’ll be fine. In the span of 50 years, we’ve gone from one scenario to the other. But Brooke is doing it because he feels the exact same way Phil did. Brooke told me that he got involved with Operation Migration because it was as if someone had a flat tire on the side of the road and he had a jack in his car. He saw a problem and he knew that he could pull over and help. That’s where it all starts from.

Manaugh: This is a hypothesis in the guise of a question. Most people’s experience of wildlife nowadays is in the form of roadkill or perhaps squirrels nibbling through the phone cable or raccoons in their backyard. It’s very unromantic—whereas pets seem to be getting more and more exotic and strange. There’s a boom in people owning lions or boa constrictors or incredibly rare tropical birds as pets. I’m curious what you think about the role of the pet in terms of our relationship with wild animals, and whether we are turning to increasingly exotic pets in order to replace the wildness we find missing in nature itself.

Mooallem: That’s never occurred to me, but it’s a brilliant point. I’m ashamed to say that I don’t really have a lot to say about pets. I’ve never really had a pet.

My sense is that when you have a dog, the dog is your buddy. Even though it’s a dog, you more or less relate to it as a person. I think that, in that sense, pets are sort of boring to me. But this idea that we’re trying to get our exotic thrills from a pet monkey is interesting. I’ll have to give that some thought.

The stories that interest me as a writer are ones in which people are trying to respond appropriately to something where it’s not clear what the appropriate response is. For a while, I was writing a lot about the dilemma of recycling—you’re holding this can, and you don’t know whether putting it in the recycling bin is smart or whether it just gets shipped off to China. There’s that drive to do the moral thing, but most of us are completely clueless as to what the right thing might be, because of the complexity of the issues.

Wild animals are the perfect example of that kind of situation, because they can’t really tell us what they need—they’re just this black box that our actions get fed into. For some reason, probably some deep Freudian problem, that challenge of trying to do the right thing but ultimately just banging your head against the wall to figure it out is really appealing to me. I really relate to it.

I guess that’s why I’m not really that interested in pets, either. You come to feel that you understand your pet, even if you don’t. There’s not that tension or urge to solve the problem that you get with otters or wolves or buffalo. You house-break your pet and then it’s over.

Manaugh: I wonder, though, if that’s not part of the appeal of getting an exotic animal species as a pet—the promise and the thrill of not understanding it.

Mooallem: At the same time, that’s a feeling that you’ll eventually get bored or annoyed with, and you’ll end up abandoning the pet. I just read that the government is setting up unwanted tortoise drop-offs for owners who want to abandon their pets, just like babies at fire stations. Apparently in some states—Nevada and a few others—there are dozens of desert tortoises being left by their owners by the side of the road.


Desert tortoises at a sanctuary for abandoned pet tortoises in southwest Las Vegas. Photo: Jessica Ebelhar, Las Vegas Review-Journal.

When a pet monkey goes nuts and the owner gives it up, we tend to look at it as a failure of pet ownership, but maybe they actually wanted that feeling of not understanding the animal, at least at first. It’s an interesting theory.

Twilley: Another group of people who would seem to have a very different but equally complex relationship to wild animals is hunters. That’s a whole segment of Americans who seem to be less troubled about what their relationship should be with wild animals, yet who often end up being at the forefront of conservation movements, in order to save the landscapes in which they hunt. The division is interesting—it seems philosophical, but it’s also maybe class-based?

Mooallem: It’s geographic, definitely. But you’re right: a lot of the stereotypes around hunters break down when you see all the really creative conservation projects that are supported, or even spearheaded, by people who we might normally think of as redneck hunters. The lines are just not clearly defined. You also choose your species—some people are more sympathetic to one species than they are to others.

The other point I was trying to make with the book is that conserving a species or celebrating a species is just another way to use the species. Conservationists always talk about utilitarian values and aesthetic values, but, to me, it’s all the same thing. Some of us want salmon in the Columbia River because we want to fish them, and some of us want salmon there because it’s part of America’s natural glory, or because we’ll feel guilty if they go away. But, in all of those reasons, the salmon are serving human needs.

Those different reasons really come to the surface when a species rebounds. Right now, there’s a huge fight up and down the sandhill crane flyway. They were all but extinct, yet they’ve come back to the point where they’re annoying farmers, and hunters are saying: “Fantastic! They’re back—now I can hunt them with my son again. Success!” And, of course, then there’s an outcry from the birdwatchers and the conservationists who are saying that that’s not why we brought them back. We brought them back so they could be beautiful, not so they could be shot. But these are still just two groups of people who want something out of the bird.

Manaugh: There’s another book that came out recently called Nature Wars

Mooallem: Yes, I read that.

Manaugh: The author, Jim Sterba, argues that all of our well-intentioned efforts to protect animals have actually allowed deer and beaver and Canada goose populations to explode, and now they’re bringing down our planes and causing car crashes and tearing up our golf courses and so on. He ends up, to my mind, at least, over-emphasizing the point that we need to become hunters again—that the ecosystem is out of balance precisely because it no longer features human predators.


Roadkilled deer, South Carolina. Photo: John O'Neill.

Mooallem: Preserving these species—whether it’s intentional or whether it’s an unintended consequence of habitat changes, as in the case of deer—is an ecological act, and it’s going to have repercussions that we should take responsibility for dealing with. We forget we’re ecological participants. In fact, if Sterba’s book hadn’t been written, I might be thinking about exactly the same issue now. There are so many cases where it’s the rebound or the resurgence that causes the problem, rather than the decline.

The real fallacy is the “leave no trace” attitude. There is no way you’re not leaving a trace, so it’s better simply to be conscious and thoughtful and to take responsibility for what you’re doing.

Somebody asked me the other day about the de-extinction movement, and I had the same response. I don’t know what I think about actually bringing back passenger pigeons, but I think it’s good that people are talking about being proactive and being creative rather than just trying to pretend we don’t have any power.

Of course, it also makes me nervous—as it should, given our environmental history of unintended consequences, having to find solutions for problems that were caused by our own solutions for other problems that we ourselves most likely caused in the first place.
Across the United States, natural darkness is an endangered resource. East of the Mississippi, it is already extinct; even in the West, night sky connoisseurs admit that it's quicker to find true darkness by flying to Alice Springs, Australia, than traveling to anywhere in the Lower Forty-eight.

Ever since the nation's first electric streetlight made its debut in Cleveland, on April 29, 1879, the American night has become steadily brighter. In his new book, The End of Night: Searching for Natural Darkness in an Age of Artificial Light, Paul Bogard aims to draw attention to the naturally dark night as a landscape in its own right—a separate, incredibly valuable environmental condition that we overlook and destroy at our own peril.


Poster designed by Tyler Nordgren, author of Stars Above, Earth Below: A Guide to Astronomy in the National Parks.

Venue took the opportunity to visit Bogard in his office on the campus of James Madison University, in Harrisonburg, Virginia, to learn more about nocturnal America and its dark skies—and what we have lost by dissociating the two.

Our conversation touches on the difficulty of measuring and preserving such an ephemeral quality, as well as the ecological and health consequences of endless artificial light, with speculative detours into evolutionary shifts in human vision and the possibility of preserving Las Vegas (the brightest pixel in the world in NASA photographs) as a "light pollution park."

• • •


The Bortle scale was originally published in Sky & Telescope magazine in 2001. It classifies the darkness of skies from point of view of an astronomer, ranging from 1 ("an observer's Nirvana!") to 9, in which "the only celestial objects that really provide pleasing telescopic views are the Moon, the planets, and a few of the brightest star clusters." This illustration of the scale comes via Stellarium.

Nicola Twilley: Darkness is easy to overlook, if you’ll excuse the pun. How did you go about structuring the story of such a familiar, yet intangible quality?

Paul Bogard: People think they know darkness, and that they experience darkness everyday, but they don’t, really. That’s one of the reasons I borrowed the Bortle scale for the table of contents. I think John Bortle’s point, when he created this tool for measuring the darkness of skies, was that we have no idea what darkness really is. We think night is dark—full stop, end of story. But, on the Bortle scale, cities would be a Class 9—the brightest. Most of us spend our nights in what he would call a 5 at best, or more likely a 6 or 7. We rarely, if ever, get any darker than that.

Until the coming of electric light, people experienced a darkness that Bortle would classify as 2 or 3, every night. What I tried to do in the book is to show that difference, by working my way down from places that are bright to those that are less bright, but also by talking to people who are living and working in those places.


Left: Winter constellations in a Bortle Class 4 or 5 sky. Right: The same constellation panorama in an urban, Class 8 or 9 sky. Illustrations by John Bianchi from Exploring the Night Sky by Terence Dickinson, Sky & Telescope, February 2001.

Twilley: It’s interesting that, in order to see the nuances in darkness, we need to measure and name it. It was certainly a revelation to me to read in your book that twilight has three stages—civil, nautical, and astronomical, with civil being when cars should use headlights, nautical meaning that enough stars are visible for navigational purposes, and astronomical referring to the point at which the sky is dark enough for the faintest stars to emerge. Previously, I had thought of twilight as a single condition on the light-to-dark spectrum, rather than a multiplicity.

Bogard: For sure. For me, one of the reasons why identifying different depths of darkness is so important is that we don’t recognize that we’re losing it, unless we have a name to recognize it by. It’s also a way to talk about what we might regain.

That’s also what the National Parks Service Night Sky team, who I describe in the book, is trying to do with their sky quality index. If you’re charged with preserving darkness as natural resource, unimpaired for future generations, then you need to be able to put a number on the level of darkness. You need to be able to see and measure any losses before you even know what you’re trying to protect.


A member of the Night Skies team setting up the wide-field CCD camera that the National Parks Service uses to measure light pollution, at Homestead National Monument, Nebraska.

Twilley: It’s astonishing to read the description of a Bortle Class 1, where the Milky Way is actually capable of casting shadows!

Bogard: It is. There’s a statistic that I quote, which is that eight of every ten kids born in the United States today will never experience a sky dark enough to see the Milky Way. The Milky Way becomes visible at 3 or 4 on the Bortle scale. That’s not even down to a 1. One is pretty stringent. I’ve been in some really dark places that might not have qualified as a 1, just because there was a glow of a city way off in the distance, on the horizon. You can’t have any signs of artificial light to qualify as a Bortle Class 1.

A Bortle Class 1 is so dark that it’s bright. That’s the great thing—the darker it gets, if it’s clear, the brighter the night is. That’s something we never see either, because it’s so artificially bright in all the places we live. We never see the natural light of the night sky.


New York 40º 44' 39" N 2010-10-13 LST 0:04, photo illustration by Thierry Cohen as part of the Villes Eteintes series, via The New York Times. Cohen photographs major cities at night, digitally manipulates them to remove all lights, and then inserts a starry night sky from somewhere with much less light pollution on the same latitude, to create an image that shows us what New York City or Sao Paulo would look like under the Milky Way.

Geoff Manaugh: There are a few popular urban legends about the extent to which people no longer experience true, natural darkness. One is that, even though telescopes sell really well in New York, no one has seen a star over Manhattan since 1976 or something like that. The other one, which I have to assume is also at least partially an exaggeration, is that, after the Northridge earthquake in 1994, the L.A.P.D. was flooded with worried phone calls because people were seeing all these mysterious lights in the sky—lights that turned out to be stars.

Bogard: I’ve heard that one, too—that people were seeing the Milky Way for the first time, and they didn’t know what it was.

Those stories make me think of a couple of things. While I was writing the book, I went to Florence, on the trail of Galileo, and they still have two of his four telescopes. An astronomer there had this amazing line that he told me, which was that 400 years ago, in Florence, everyone could see the stars, but only Galileo had a telescope. Now, everybody has a telescope, but nobody can see the stars.

That really speaks to that New York legend. Telescope sales continue to be good, astronomy books continue to be published, and there are sky-watching apps on your phone. People are interested in the night sky. But we can’t really see any of it.


Los Angeles 34º 06' 58" N 2012-06-15 LST 14:52, photo illustration by Thierry Cohen as part of the Villes Eteintes series, via The New York Times.

The other thing it reminds me of is a guy I met in Paris, who told me that he thinks that, for the amateur astronomer, the most important instrument is not the telescope, but the automobile, because you have to have a car to drive somewhere dark enough to see anything.

Twilley: At the start of the book, you differentiate between darkness and night. Is it just that the two are no longer synonymous, or were they ever?

Bogard: It’s a good question. They’re so obviously intertwined, but it seemed to make sense to differentiate them or to specify one or the other. Night, obviously, in many places, is no longer really dark, or at least not naturally dark. In that sense, you can’t say that night means darkness. They’re not synonymous anymore. Sometimes I think that what makes night night, what makes night special, and what I love about it, is more than darkness. It is light, whether it’s natural light, like candles, or beautiful artificial light. A lot of electric lighting is really quite beautiful now.

Artificial lighting has meant a lot of really good things, arguably. We are able to extend the day into the night, which means that we can keep working, we can pursue our hobbies, we can go out to dinner, we can entertain—we can party all night long! We can do all these things that we like to do, that night has become known for. But there are other things that we have lost through this process of nocturnalization.



Landmarks in our short history of artificial street lighting include gas lamps (these arrived in New York City in 1827, with each one having to be lit by hand), and arc-light moontowers (several cities experimented with these in the late 1800s, but Austin, Texas, is the only place to still use them today).

It’s not really my thrust in the book, but I guess what I’m saying is that, if that’s all that night is, and we have lost so many of these other qualities of night, whether it’s quiet or darkness or solitude, then I think the night that we are experiencing now is really a lessened version of what it could be.

Night has a lot of qualities beyond darkness or lack of darkness—things like nocturnal sounds and smells. Those sensory things have more to do with night, for me. I’ve always had that sense that, at night, the world reduces in size and fury and sound and we start to feel not so overrun by everything. At night, that’s how I feel—free, to pursue my writing and reading or whatever. We let go of those burdens that the day holds. Those sorts of things mean that night is much more than just darkness. Yet darkness itself has so much importance alone, too, for human health and ecological health.


This Sunforce 82156 60 LED Solar Motion Light promises "added security," "powerful detection," and "peace of mind."

Manaugh: People also assume that darkness is inherently dangerous, yet you show how the connection between light and security is often a false promise.

Bogard: Exactly. Historically, that connection is really interesting. The state really encouraged light, because officials felt as though they could control a well-lit city better. Illumination was conflated with the power of the state, going back to Louis XIV, the Sun King, who decreed that candles should be hung in the streets, to demonstrate his might by banishing dark. In the years before the French Revolution, for many Parisians, public street lighting stood for tyranny. Oil-lamp smashing was a regular thing.

Ironically, what has happened now is that we have so much light that we can no longer see. We’re blinded—sometimes literally, by the brightness and glare of our security lighting—but also metaphorically, which is to say that when we light everything up, there is really no reason to look over and notice something, and say, “Wow, that’s a weird thing.”

When everything is so brightly lit, why should we look? It’s light, so it’s safe, so we switch off. And, while no one is looking, we’ve actually made life easier for the bad guys. Some studies even show that criminals actually prefer well-lit areas. I had several policemen and security consultants tell me that criminals are as afraid of the dark as we are. They don’t want to go in the dark. The light makes them feel safe, just as it does us.


Centurion Security Lighting Kit, via.

The other thing is that, physically, so much light makes it hard for our eyes to see. We don’t adapt from bright to dark quickly, so if we look toward the light, we can’t see anything else, and then most street lighting is incredibly badly designed and actually reduces contrast.

Sure, some lighting is helpful, in terms of safety and security. But we are not safe or secure simply because of lights. We are safe and secure when we are conscious of our surroundings. Most of our security lights are a huge waste of money and energy.

It’s a difficult issue. The entire third chapter is all about safety and security. I spent a lot of time on it, because the minute you start talking about light pollution, or the importance of darkness, people’s first response is, “Yeah, but we need light for safety and security.” It touches a nerve. I would just say that we don’t need all this light for safety and security. We use way more than we need, and it isn’t making anybody any safer.


Civil Twilight Design Collective won Metropolis' Next Generation 2007 contest for their lunar-resonant streetlight system, which would brighten and dim in response to ambient lighting levels.

One thing I’d say is that our eyes are amazing organs. Given the chance to adjust to darkness, we can see quite a bit and see fairly well. I would imagine that if you got rid of wall-packs and security lights and so on, you could rely on more subtle lighting design in crosswalks, stairwells, and doorways. A couple of the lighting designers I spoke to were very excited about responsive lighting.

For example, I spoke with a woman in Boulder, Colorado, whose thing was that putting lights on poles is ridiculous, and that, instead, we should have step-lights at foot level that get triggered with a motion detector. Another guy I talked with was mapping the night geography of Paris, with the idea that you could match the lux level of street lighting to the level of activity.

Twilley: There seem to be significant disparities in the quality of different cities’ nightscapes. In the book, you engage in some comparative darkness tourism in London and Paris, and London comes across as a completely wasted opportunity, in terms of lighting.

Bogard: I thought so. I’ve noticed again and again that cities will spend all this money on making themselves pretty to draw visitors, and then they having glaring light all over the place. At night, they are as ugly as every place else.


Notre-Dame de Paris illuminated at night, by Atoma.

In Paris, the lighting is designed to make the buildings beautiful at night. In London, and really all over the United States with very few exceptions, much of the lighting is just a big light shining on a building. You can see it, sure, but it’s not really very beautiful.

Manaugh: Speaking of darkness tourism, I just noticed a book called Night Walks on the bookshelf behind you, and it reminded me of something I read about the poet Samuel Taylor Coleridge. Apparently, Coleridge would take massive walks in the middle of the night. He would show up at Wordsworth’s house at 3 a.m., and they would head out into the Lake District together, talking and walking beneath the stars. It made me wonder if there are—such as night walking—lost practices of darkness, so to speak, through which people once pursued certain experiences defined by the absence of light.

Bogard: I have always loved the experience—wherever I’ve been living—of going out walking at night, usually at around eleven-ish. Nobody is out, for the most part. You can look through windows into people’s houses, if you want to, which is sort of like an Advent calendar thing. Everything looks a little different, somehow. It’s just quieter. My dog and I go walking at night, before we go to bed.

What’s interesting is that I love being out at night, but I’m also still somebody who’s afraid of the dark. That’s why the experience that I have in the book, being in Death Valley and just walking around in this incredible darkness over a several hour period, was a really great one, because after two or three hours, your eyes seem to shift again and you can see even more. You begin to feel much more comfortable. I’d love to do that again.

Twilley: The most astonishing statistic in the book, for me, was the fact that 40 percent of Americans live in such bright environments that their eyes never transition to night vision—from the cones to rods. I can’t help but wonder if, thanks to our saturation in artificial light, we might end up losing one of our ways of seeing the world.

Bogard: I actually asked Alan Lewis, a former head of the Illuminating Engineering Society of North America, exactly that question. He said he didn’t have any proof that our physiology was changing in response to the disappearance of darkness. Of course, it hasn’t been very long. My guess is that, if we keep going down the path of more and more artificial lighting, we would eventually lose scotopic vision—that’s the technical term for low-light vision using the eye’s rod cells.

That’s one of the things about all this light—it’s been so recent. Our grandparents and our great-grandparents grew up in a time when it was just so much darker. In the book, I’ve included the map that Fabio Falchi, the Italian I meet towards the end of the book, has made of the increase of artificial night sky brightness in North America. It shows the late 1950s, the mid-1970s, 1997, and then a prediction for 2025.


The increase in artificial night sky brightness in North America, including an extrapolated prediction for light pollution levels in 2025. Maps created by P. Cinzano, F. Falchi, and C. D. Elvidge.

I remember the 1970s. It wasn’t that long ago. And it’s significantly darker on those maps then than it is now.

Manaugh: That raises the question of historic preservation and what it means to bring darkness back. I’m reminded of architect Jorge Otero-Pailos and his experimental olfactory reconstruction of Philip Johnson’s Glass House in New Canaan, Connecticut. He realized that, to recreate the original smell of the house, you not only had to recreate all the VOCs off-gassing from new paint and furniture, etc., but you also bring back the smell of tobacco and the smell of certain colognes that were ubiquitous at the time—an entire olfactory aesthetic, as it were, that has been lost in the subsequent years. I mention that because you can imagine that a true historic reconstruction of a 1950s suburb would require not only a totally different light level at night but, by today’s standards, a blinding sky full of stars.


Paris 48º 50' 55" N 2012-08-13 LST 22:15, photo illustration by Thierry Cohen as part of the Villes Eteintes series, via The New York Times.


Paris 48º 51' 46" N 2012-09-13 LST 2:16, photo illustration by Thierry Cohen as part of the Villes Eteintes series, via The New York Times.

Along those lines, I’d love to hear how the National Park Service’s Night Sky Team plans to go about actually protecting such an intangible resource as darkness, and maybe even reconstructing it to “original” levels. I’m also curious whether, in the other direction, you could maybe imagine a time where, thirty years from now, we might actually have a nostalgic “light pollution park.” People would pay admission to see how crazily well-lit our cities used to be.

Twilley: We could just wall off Las Vegas and declare it a light pollution sacrifice zone right now.


The Luxor beam in Las Vegas is equal to the light of more than forty billion candles.

Bogard: That is such a neat idea. I hope that, in thirty years, or perhaps even less, that would make some sense.

As you probably know, for Earth Hour every March, people turn off the lights on certain buildings. When I met with Fabio Falchi, he was trying to get his town, Mantua, to turn off the lights after midnight. He said that he went to the Leaning Tower of Pisa for Earth Hour, and he suddenly realized how magical it was to see these famous monuments with the lights off. He thought that if more people could see these places surrounded by darkness, it would be like a discovery, because no one has seen them like that in fifty years.

Of course, he said, even with the lights off, it’s not how it was, because there’s so much sky glow. There is so much cumulative light from the surroundings reflecting that you could probably never get back to what it was originally like.


Light domes from cities at various distances from Mt. Dellenbaugh, Grand Canyon Parashant National Monument, in 2007. NPS photo.

Twilley: In the book you mention that, even in Death Valley, one of the darkest places in North America, you can see the light dome of Las Vegas on the horizon, and the lights of flights heading into San Francisco above.

Bogard: Exactly. That’s the challenge of preserving darkness: you can’t do it on your own. The National Parks Service team, in addition to figuring out how to measure darkness in order to put a number to what we have to lose, figures that their best bet is education. Of course, the parks themselves have overhauled their own lighting, but they’re also starting to offer all kinds of night programs, whether it be focused on the sensory experience of the land at night or astronomical observation or whatever. If they can’t get the rest of us to care about darkness, they don’t stand a chance of preserving their own.

There are some positive signs. For example, Acadia National Park in Maine had its first Night Sky Festival in 2009, and now the local community of Bar Harbor has enacted a light ordinance to reduce their sky glow.


Poster designed by Tyler Nordgren.

That’s the National Park Service idea, essentially. Americans will come and learn about light pollution and darkness and all of the ecological and health reasons why darkness is important and endangered. Then we will go home and, hopefully, apply some of those lessons there.

I would imagine that lots of people west of the Mississippi might say, “It’s dark where I live.” But we have changed things so much that anywhere you go east of the Mississippi, there is no true darkness. It has all been tainted.

One guy on the Night Sky team told me that sometimes people will ask, “What are you going to do with the cities? You’ll never get the cities dark again—that’s just impossible. There are too many people and too many lights.” He said that, to a certain extent, that’s true. You’re probably not going to bring the Milky Way back over Manhattan or Chicago.

His reply, though, is that if you were able to just reduce the lighting in these major cities you would see great benefits. You could address a lot of the health issues that people in the cities, who are exposed to huge amounts of light at night, are suffering from.

The other thing is that, when you draw the lighting down in the cities, the darkness ripples out into the suburbs and the country. The reason the suburbs and the countryside are so bright is because of the cities. Plenty of suburbs and towns have awful lighting as well, of course, but they could fix that lighting or even turn it all off and their skies would still be bright, because of the nearest city.


A satellite view of Earth at night shows the prevalence of artificial lighting. NASA.

Twilley: To follow up on that, I’m curious about the question of legislation. Some cities, like Flagstaff, have lighting ordinances, of course. But one of the really interesting implications in your book is that, if you think about darkness as a common resource like water or clean air, we have environmental legislation and acceptable levels for pollution for them. Or, if you think about the health side, you could make the analogy with secondhand smoke and the ways in which we regulate that. At one point you mention the phrase “light trespass,” which implies we could treat darkness like property. Would any of these be effective models for preserving darkness?

Bogard: Realistically, I think we have to start with the places that are still dark, and preserve them, because, as with so many things, they are not making it anymore. The pressures are all headed in one direction. Any kind of forward-looking lighting plan that I’ve seen starts with a solid core of darkness and then works its way out from there.

In terms of legislation, in the UK, British astronomers are taking the approach of putting lighting standards into building code. That way, any new building has to have dark-sky-friendly lighting. Then lower lighting levels become more and more normal, and you don’t get that escalation effect I describe, where older buildings look dim next to new ones, and upgrade their lighting to match, and so on. People just get used to it.


Gas station in the middle of Nevada, photograph by James Reeves. "Gas stations," Bogard told us, "are the worst offenders by far. They are just egregiously bright."

Manaugh: Of course, there is potential for a huge backlash against that, at least in the United States. If you use even something as universally beneficial as vehicle emission limits in cars as an example, you see people railing against government intrusion all the time. I can easily see someone on cable news complaining, “They want to tell me when I can turn my lights on?”

Bogard: My hope is that part of that just takes time, and those voices will eventually fade away. I see this with my students. They’ve never really been asked to think about lighting and darkness, and they assume that this super-bright world in which we live today is just the way the world is. If you could shift that and, for example, make a college campus a place where you became sensitive to good lighting, then everybody would leave with at least a sense of what’s possible.

Roger Narboni, who designed the world’s first urban “lighting master plan” for the French city of Montpellier way back in the 1980s, told me that his dream is to have education about light and darkness beginning in kindergarten, as a core part of the curriculum.

Manaugh: There’s a certain poetry to having a conversation about dark sky reserves in the National Radio Quiet Zone. This is a landscape, after all, where, by federal decree, electromagnetic “pollution” has to be kept to a bare minimum.

Bogard: Wow, I didn’t know that. I had never heard of that.


The National Radio Quiet Zone boundaries, via the National Radio Astronomy Observatory.

Manaugh: The regulations were put in place to protect the work of the National Radio Astronomy Observatory in Green Bank. The result is a 13,000-square-mile radio quarantine zone. It’s one of the few places in the United States where the air is not completely saturated by electromagnetic emissions from cell phones and power lines and radio stations and everything else.

Twilley: What’s also interesting is that people move here for that reason—people who feel that they are sensitive to electromagnetic emissions will move here for their health.

Manaugh: So, while we were driving here, we were thinking about the idea of a luxury darkness retreat, as a well-being thing.

Bogard: I can definitely imagine that. The thing I write about in the book is the question of who will have access to darkness. It’s like so many of these other things—green space, trees, quiet, and so on. It could end up being unevenly distributed; where the only way to get real darkness is to be able afford to live in a community like Aspen or Vail or somewhere like that.

This makes me think of when I was in Phoenix. I can’t remember the name of the wealthiest suburb, but what I noticed is that when you drive up towards it, all of a sudden, it’s dark. These people are rich enough to have anything they want, and they choose to have darkness at night.

Meanwhile, kids who are growing up in cities whose families don’t have the resources to travel are never going to experience that. I wonder if it will get to the point where none of us can get there, unless you’re the one percent. Then you can afford to go someplace really dark.

Twilley: It already seems as though there are huge inequalities in our exposure to light at night. I was shocked by the statistic you quote about nearly 20 percent of African-Americans in the United States working the night shift.

Bogard: And then there’s the fact that public housing is almost always over-lit in an effort to deter crime. There’s another darkness-deprived population I hadn’t considered either, before I wrote this book, which is prisoners. There’s this former convict, Ken Lamberton, who wrote about his time in prison and the way he was forced to be in the light—he wasn’t even allowed to cover his face with a blanket at night. It’s as if being constantly illuminated was actually part of his punishment.


Hallway lighting in a supermax prison is never switched off. Photograph via.

One thing that appeals to me about light a lot is how symbolic it is. Our usage of light right now is hugely symbolic of our lack of awareness of how we use things and the way we use so much more of everything than we need. It seems to me that if we could control our light use and use light more intelligently, then it could also be symbolic of us finally getting our act together in a lot of different ways.

Screenshot of our own SimCity (called, for reasons that made sense at the time, We Are The Champignons) after three hours of game play.

In the nearly quarter-century since designer Will Wright launched the iconic urban planning computer game, SimCity, not only has the world's population become majoritatively urban for the first time in human history, but interest in cities and their design has gone mainstream.

Once a byword for boring, city planning is now a hot topic, claimed by technology companies, economists, so-called "Supermayors," and cultural institutions alike as the key to humanity's future. Indeed, if we are to believe the hype, the city has become our species' greatest triumph.

A shot from photographer Michael Wolf's extraordinary Architecture of Density series, newly available in hardcover.

In March 2013, the first new iteration of SimCity in a decade was launched, amidst a flurry of critical praise mingled with fan disappointment at Electronic Arts' "always-online" digital rights management policy and repeated server failures.

A few weeks before the launch, Venue had the opportunity to play the new SimCity at its Manhattan premiere, during which time we feverishly laid out curving roads and parks, drilled for oil while installing a token wind turbine, and tried to ignore our city's residents'—known as Sims—complaints as their homes burned before we could afford to build a fire station.



We emerged three hours later, blinking and dazed, into the gleaming white and purple lights of Times Square, and were immediately struck by the abstractions required to translate such a complex, dynamic environment into a coherent game structure, and the assumptions and values embedded in that translation.

Fortunately, the game's lead designer, Stone Librande, was happy to talk with us further about his research and decision-making process, as well as some of the ways in which real-world players have already surprised him. We spoke to him both in person and by telephone, and our conversation appears below.

• • •



Nicola Twilley: I thought I’d start by asking what sorts of sources you used to get ideas for SimCity, whether it be reading books, interviewing urban experts, or visiting different cities?

Stone Librande: From working on SimCity games in the past, we already have a library here with a lot of city planning books. Those were really good as a reference, but I found, personally, that the thing I was most attracted to was using Google Earth and Google Street View to go anywhere in the world and look down on real cities. I found it to be an extremely powerful way to understand the differences between cities and small towns in different regions.

Google has a tool in there that you can use to measure out how big things are. When I first started out, I used that a lot to investigate different cities. I’d bring up San Francisco and measure the parks and the streets, and then I’d go to my home town and measure it, to figure out how it differed and so on. My inspiration wasn’t really drawn from urban planning books; it was more from deconstructing the existing world.

Then I also really got into Netflix streaming documentaries. There is just so much good stuff there, and Netflix is good at suggesting things. That opened up a whole series of documentaries that I would watch almost every night after dinner. There were videos on water problems, oil problems, the food industry, manufacturing, sewage systems, and on and on—all sorts of things. Those covered a lot of different territory and were really enlightening to me.



Geoff Manaugh: While you were making those measurements of different real-world cities, did you discover any surprising patterns or spatial relationships?

Librande: Yes, definitely. I think the biggest one was the parking lots. When I started measuring out our local grocery store, which I don’t think of as being that big, I was blown away by how much more space was parking lot rather than actual store. That was kind of a problem, because we were originally just going to model real cities, but we quickly realized there were way too many parking lots in the real world and that our game was going to be really boring if it was proportional in terms of parking lots.

Manaugh: You would be making SimParkingLot, rather than SimCity.

Librande: [laughs] Exactly. So what we do in the game is that we just imagine they are underground. We do have parking lots in the game, and we do try to scale them—so, if you have a little grocery store, we’ll put six or seven parking spots on the side, and, if you have a big convention center or a big pro stadium, they’ll have what seem like really big lots—but they’re nowhere near what a real grocery store or pro stadium would have. We had to do the best we could do and still make the game look attractive.


Using the zoning tool for the city designed by We Are the Champignons.

Twilley: I’d love to hear more about the design process and how you went about testing different iterations. Did you storyboard narratives for possible cities and urban forms that you might want to include in the game?

Librande: The way the game is set up, it’s kind of infinite. What I mean by that is that you could play it so many different ways that it’s basically impossible to storyboard or have a defined set of narratives for how the player will play it.


Stone Librande's storyboards for "Green City" and "Mining City" at the start of play.

Instead, what I did was that I came up with two extreme cases—around the office we call them “Berkeley” and “Pittsburgh,” or “Green City” and “Dirty City.” We said, if you are the kind of player who wants to make utopia—a city with wind power, solar power, lots of education and culture, and everything’s beautiful and green and low density—then this would be the path you would take in our game.

But then we made a parallel path for a really greedy player who just wants to make as much money as possible, and is just exploiting or even torturing their Sims. In that scenario, you’re not educating them; you’re just using them as slave labor to make money for your city. You put coal power plants in, you put dumps everywhere, and you don’t care about their health.


Stone Librande's storyboard for "Green City" at mid-game.

I made a series of panels, showing those two cities from beginning to late stage, where everything falls apart. Then, later on, when we got to multiplayer, I joined those two diagrams together and said, “If both of these cities start working together, then they can actually solve each other’s problems.”

The idea was to set them up like bookends—these are the extremes of our game. A real player will do a thousand things that fall somewhere in between those extremes and create all sorts of weird combinations. We can’t predict all of that.

Basically, we figured that if we set the bookends, then we would at least understand the boundaries of what kind of art we need to build, and what kind of game play experiences we need to design for.


Stone Librande's storyboard for "Mining City" at mid-game.

Twilley: In going through that process, did you discover things that you needed to change to make game play more gripping for either the dirty city or the clean city?

Librande: It was pretty straightforward to look at Pittsburgh, the dirty city, and understand why it was going to fail, but you have to try to understand why the clean one might fail, as well. If you have one city—one path—that always fails, and one that always succeeds, in a video game, that’s really bad design. Each path has to have its own unique problems.

What happened was that we just started to look at the two diagrams side-by-side, and we knew all the systems we wanted to support in our game—things like power, utilities, wealth levels, population numbers, and all that kind of stuff—and we basically divided them up.

We literally said: “Let’s put all of this on this side over in Pittsburgh and the rest of it over onto Berkeley.” That’s why, at the very end, when they join together, they are able to solve each other’s problems because, between the two of them, they have all the problems but they also have all the answers.


Stone Librande's storyboard for the "Green City" and "Mining City" end-game symbiosis.

Twilley: One thing that struck me, after playing, was that you do incorporate a lot of different and complex systems in the game, both physical ones like water, and more abstract ones, like the economy. But—and this seems particularly surprising, given that one of your bookend cities was nicknamed Berkeley—the food system doesn’t come into the game at all. Why not?

Librande: Food isn’t in the game, but it’s not that we didn’t think about it—it just became a scoping issue. The early design actually did call for agriculture and food systems, but, as part of the natural process of creating a video game, or any situation where you have deadlines and budgets that you have to meet, we had to make the decision that it was going to be one of the things that the Sims take care of on their own, and that the Mayor—that is, the player—has nothing to do with it.

I watched some amazing food system documentaries, though, so it was really kind of sad to not include any of that in the game.


Data layer showing ore deposits.


Data layer showing happiness levels. In SimCity, happiness is increased by wealth, good road connections, and public safety, and decreased by traffic jams and pollution.

Manaugh: Now that the game is out in the world, and because of the central, online hosting of all the games being played right now, I have to imagine that you are building up an incredible archive of all the decisions that different players have made and all the different kind of cities that people have built. I’m curious as to what you might be able to make or do with that kind of information. Are you mining it to see what kinds of mistakes people routinely make, or what sorts of urban forms are most popular? If so, is the audience for that information only in-house, for developing future versions of SimCity, or could you imagine sharing it with urban planners or real-life Mayors to offer an insight into popular urbanism?

Librande: It’s an interesting question. It’s hard to answer easily, though, because there are so many different ways players can play the game. The game was designed to cover as many different play patterns as we could think of, because our goal was to try to entertain as many of the different player demographics as we could.

So, there are what we call “hardcore players.” Primarily, they want to compete, so we give them leader boards and we give them incentives to show they are “better” than somebody else. We might say: “There’s a competition to have the most people in your city.” And they are just going to do whatever it takes to cram as many people into a city as possible, to show that they can win. Or there might be a competition to get the most rich people in your city, which requires a different strategy than just having the most people. It’s hard to keep rich people in a city.

Each of those leader boards, and each of those challenges, will start to skew those hardcore people to play in different ways. We are putting the carrot out there and saying: “Hey, play this way and see how well you can do.” So, in that case, we are kind of tainting the data, because we are giving them a particular direction to go in and a particular goal.

On the other end of the spectrum, there are the “creative players” who are not trying to win—they are trying to tell a story. They are just trying to create something beautiful. For instance, when my wife plays, she wants lots of schools and parks and she’s not at all concerned with trying to make the most money or have the most people. She just wants to build that idealized little town that she thinks would be the perfect place to live.


A regional view of a SimCity game, showing different cities and their painfully small footprints.

So, getting back to your question, because player types cover such a big spectrum, it’s really hard for us to look at the raw data and pull out things like: “This is the kind of place that people want to live in.” That said, we do have a lot of data and we can look at it and see things, like how many people put down a park and how many people put in a tram system. We can measure those things in the aggregate, but I don’t think they would say much about real city planning.

Twilley: Building on that idea of different sorts of players and ways of playing, are there a variety of ways of “winning” at SimCity? Have you personally built cities that you would define as particularly successful within the game, and, if so, what made them “winners”?

Librande: For sure, there is no way to win at SimCity other then what you decide to put into the game. If you come in with a certain goal in mind—perhaps, say, that you want a high approval rating and everyone should be happy all the time— then you would play very differently than if you went in wanting to make a million dollars or have a city with a million people in it.

As far as my personal city planning goes, it has varied. I’ve played the game so much, because early on I just had to play every system at least once to understand it. I tried to build a power city, a casino city, a mining city—I tried to build one of everything.

Now that I’m done with that phase, and I’m just playing for fun at home, I’ve learned that I enjoy mid-density cities much more then high-density cities. To me, high-density cities are just a nightmare to run and operate. I don’t want to be the mayor of New York; I want to be the mayor of a small town. The job is a lot easier!

Basically, I build in such a way as to not make skyscrapers. At the most, I might have just one or two because they look cool—but that’s it.


Screenshot from SimCity 4.

Manaugh: I’m curious how you dealt with previous versions of SimCity, and whether there was any anxiety about following that legacy or changing things. What are the major innovations or changes in this version of the game, and what kinds of things did you think were too iconic to get rid of?

Librande: First of all, when we started the project, and there were just a few people on the team, we all agreed that we didn’t want this game to be called SimCity 5. We just wanted to call it SimCity, because if we had a 5 on the box, everybody would think it had to be SimCity 4 with more stuff thrown in. That had the potential to be quite alienating, because SimCity 4 was already too complicated for a lot of people. That was the feedback we had gotten.

Once we made that title decision, it was very liberating—we felt like, “OK, now we can reimagine what the brand might be and how cities are built, almost from scratch.”

Technically, the big difference is the “GlassBox” engine that we have, in which all the agents promote a bottom-up simulation. All the previous SimCity games were literally built on spreadsheets where you would type a number into a grid cell, and then it propagated out into adjacent grid cells, and the whole city was a formula.

SimCity 4 was literally prototyped in Excel. There were no graphics—it was just a bunch of numbers—but you could type a code that represented a particular type of building and the formulae built into the spreadsheet would then decide how much power it had and how many people would work there. It just statically calculated the city as if it were a bunch of snapshots.


A fire breaks out in the city designed by We Are The Champignons.

Because our SimCity—the new SimCity—is really about getting these agents to move around, it’s much more about flows. Things have to be in motion. I can’t look at anybody’s city as a screenshot and tell you what’s going on; I have to see it live and moving before I can fully understand if your roads are OK, if your power is flowing, if your water is flowing, if your sewage is getting dumped out, if your garbage is getting picked up, and so on. All that stuff depends on trucks actually getting to the garbage cans, for example, and there’s no way to tell that through a snapshot.


Sims queue for the bus at dawn.

Once we made that decision—to go with an agent-driven simulation and make it work from the bottom up—then all the design has to work around that. The largest part of the design work was to say: “Now that we know agents are going to run this, how do schools work with those agents? How do fire and police systems work with these agents? How do time systems work?” All the previous editions of SimCity never had to deal with that question—they could just make a little table of crimes per capita and run those equations.

Manaugh: When you turned things over to the agents, did that have any kind of spatial effect on game play that you weren’t expecting?

Librande: It had an effect, but it was one that we were expecting. Because everything has to be in motion, we had to have good calculations about how distance and time are tied together. We had to do a lot of measurements about how long it would really take for one guy to walk from one side of the city to the other, in real time, and then what that should be in game time—including how fast the cars needed to move in relationship to the people walking in order to make it look right, compared to how fast would they really be moving, both in game time and real time. We had all these issues where the cars would be moving at eighty miles an hour in real time, but they looked really slow in the game, or where the people were walking way, way too fast, but actually they were only walking at two miles an hour.

We knew this would happen, but we just had to tweak the real-life metrics so that the motion and flow look real in the game. We worked with the animators, and followed our intuition, and tried to mimic the motion and flow of crowds.


We Are The Champignons' industrial zone, carefully positioned downwind of the residential areas.

In the end, it’s not one hundred percent based on real-life metrics; it just has to look like real life, and that’s true throughout the game. For example, if we made the airport runways actual size, they would cover up the entire city. Those are the kinds of things where we just had to make a compromise and hope that it looked good.

Twilley: Actually, one of the questions we wanted to ask was about time in the game. I found it quite intriguing that there are different speeds that you can choose to play at, but then there’s also a distinct sense of the phases of building a city and how many days and nights have to pass for certain changes to occur. Did you do any research into how fast cities change and even how the pace of city life is different in different places?

Librande: We found an amazing article about walking speeds in different cities. That was something I found really interesting. In cities like New York, people walk faster, and in medium-sized or small towns, they walk a lot slower. At one point, we had Sims walking faster as the city gets bigger, but we didn’t take it that far in the final version.



I know what you are talking about, though: in the game, bigger cities feel a lot busier and faster moving. But there’s nothing really built into the game to do that; it’s just the cumulative effect of more moving parts, I guess. In kind of a counter-intuitive way, when you start getting big traffic jams, it feels like a bigger, busier city even though nothing is moving—it’s just to do with the way we imagine rush-hour gridlock as being a characteristic of a really big city.

The fact that there’s even a real rush hour shows how important timing is for an agent-based game. We spent a lot of time trying to make the game clock tick, to pull you forward into the experience. In previous SimCities, the day/night cycle was just a graphical effect—you could actually turn it off if you didn’t like it, and it had no effect on the simulation. In our game, there is a rush hour in the morning and one at night, there are school hours, and there are shopping hours. Factories are open twenty-four hours a day, but stores close down at night, so different agents are all working on different schedules.



The result is that you end up getting really interesting cycles—these flows of Sims build up at certain times and then the buses and streets are empty and then they build back up again. There’s something really hypnotic about that when you play the game. I find myself not doing anything but just watching in this mesmerized state—almost hypnotized—where I just want to watch people drive and move around in these flows. At that point, you’re not looking at any one person; you’re looking at the aggregate of them all. It’s like watching waves flow back and forth like on a beach.

For me, that’s one of the most compelling aspects of our game. The timing just pulls you forward. We hear this all the time—people will say, “I sat down to play, and three hours had passed, and I thought, wait, how did that happen?” Part of that is the flow that comes from focusing, but another part of it is the success of our game in pulling you into its time frame and away from the real-world time frame of your desk.



Twilley: Has anything about the way people play or respond to the game surprised you? Is there anything that you already want to change?

Librande: One thing that amazed me is that, even with the issues at the launch, we had the equivalent of nine hundred man-years put into SimCity in less than a week.

Most of the stuff that people are doing, we had hoped or predicted would happen. For example, I anticipated a lot of the story-telling and a lot of the creativity—people making movies in the cities, and so on—and we’re already seeing that. YouTube is already filled with how-to videos and people putting up all these filters, like film noir cities, and it’s just really beautiful.


Screen shot from SimCity player Calvin Chan's film noir montage of his city at night.

The thing I didn’t predict was that, in the first week, two StarCraft players—that’s a very fast-paced space action game, in case you’re not familiar with it, and it’s fairly common for hardcore players to stream their StarCraft battles out to a big audience—decided to have a live-streamed SimCity battle against each other. They were in a race to be the first to a population of 100,000; they live-streamed their game; and there were twenty thousand people in the chat room, cheering them on and typing in advice—things like “No, don’t build there!” and “ What are you doing—why are you putting down street cars?” and “Come on, dude, turn your oil up!” It was like that, nonstop, for three hours. It was like a spectator sport, with twenty thousand people cheering their favorite on, and, basically, backseat city planning. That really took me by surprise.

I’m not sure where we are going to go with that, though, because we’re not really an eSport, but it seems like the game has the ability to pull that out of people. I started to try to analyze what’s going on there, and it seems that if you watch people play StarCraft and you don’t know a lot about it, your response is going to be something like, “I don’t know what I’m looking at; I don’t know if I should be cheering now; and I don’t know if what I just saw was exciting or not.”

But, if you watch someone build a city, you just know. I mean, I don’t have to teach you that putting a garbage dump next to people’s houses is going to piss them off or that you need to dump sewage somewhere. I think the reason that the audience got so into it is that everyone intuitively knows the rules of the game when it comes to cities.

Water Pipe, Running from Central Arizona Project to Pleasant Valley Development, Phoenix, Arizona (2009). Photograph by Peter Arnold, originally published on Design Observer as part of "Drylands: Water and the West," an essay by Peter and Hadley Arnold of the Arid Lands Institute, whose work focuses on the challenge of drylands design.

Aridity is the defining condition of large parts of the American West. As the first white explorer of the Colorado River, John Wesley Powell, presciently warned the attendees of a 1893 irrigation congress, there is simply not enough water to go around:

I tell you, gentlemen, you are piling up a heritage of conflict and litigation over water rights, for there is not sufficient water to supply these lands.

However, Americans—or, at least, those in positions of power—were unwilling to forego the nation's "Manifest Destiny," and, over the subsequent century and beyond, through to the present day, the arid regions of the West have been "reclaimed" through a series of dams, diversions, and irrigation projects, while the region's limited water has proved endless only in terms of its ability to generate legal fees.

Powell's own prescription, presented in his 1878 Report on the Lands of the Arid Region of the United States, proposed organizing the government of the region by watershed, rather than state, with citizens of each "drainage district" responsible for administering the resource as a communal property.


John Wesley Powell’s 1890 map of the "Arid Region of the United States, showing Drainage Districts,” published in the Eleventh Annual Report of the U.S. Geological Survey. If Congress had followed Powell's recommendations, the governance units of the West would have followed these hydrological boundaries instead of state lines. Via the Aqueous Advisor's blog, where a larger PDF version is available.

Instead, the application of a structure of individual property ownership and states' rights onto a dynamic hydrological system has led to a complex, and seemingly unsustainable, system of water management.

Nevada, home of Venue's parent institution, the Nevada Museum of Art, provides a particularly fascinating series of examples of the ways in which bureaucratic fictions of water rights and allocations articulate a physical reality of endangered Lahontan cutthroat fisheries, controversial inter-basin transfer pipes, and dangerously low reservoirs.


The white "bathtub ring" visible in this panorama of Lake Mead (taken by Kumar Appaiah) shows its lowered level. According to some estimates, the reservoir could drop below the minimum power pool elevation of 1,050 feet as early as 2017.

Curious to understand what the West's water looks like from a legal perspective, as well as to learn why Reno's Truckee River is the most litigated body of water in America, Venue stopped by the office of attorney Ross de Lipkau, author of The Nevada Law of Water Rights, for a quick chat.

Our conversation sheds light on the origins of Western water law in mining claims, the ebb and flow of the water rights market, and alternative water management systems—a vital context for understanding the region's hydrological history, as well as for re-imagining its future.

• • •



Geoff Manaugh: To begin with, I’m curious how you define the users or the constituency of a body of water—and, along those lines, how a body of water itself is defined.

Ross de Lipkau: Today, the jurisdiction of Nevada water is handled strictly by the Nevada State Engineer. The State Engineer has jurisdiction of all waters in Nevada, with the exception being the Colorado River, which comes through Nevada at the southern tip.

Nevada’s water law was first enacted in 1905. Prior to that time, you did it just like the old miners did. When Nevada was settled, homesteaders were basically trespassers upon federal lands who would simply divert water from a creek to irrigate the land they’d taken. In 1866, Congress came out with probably the most important land law of its time. What that law did was affirm and, in essence, bless the activities that had taken place previously. That meant that the mining claims were fine, and the ditches dug by the farmers across federal lands to their irrigated lands were fine, and, with that blessing, that behavior continued.

In Nevada, you simply diverted water from a creek or source and irrigated your lands, no questions asked.


Hydraulic mining near French Corral, Nevada County (c.1866), Lawrence & Houseworth (publisher), Library of Congress.

There were some cases prior to 1905, but they also affirmed prior appropriation. In 1905, Nevada water law came into effect, and what it says, in part, is that all those rights placed to beneficial use prior to the adoption of the water law are fine, but that after 1905, all water rights have to be filed and approved by the Nevada State Engineer.

The result is that we have what I call a dual system: the permitted water rights from post-1905, and, prior to that, what are called vested water rights.

Nicola Twilley: Are the vested water rights all recorded somewhere?

de Lipkau: They’re recorded in the State Engineer’s Office.

Twilley: So people who had diverted water for their own use prior to 1905 had to visit the Engineer, to make sure it was written down.

de Lipkau: Correct. We frequently go to the State Engineer’s Office in Carson City to check his official records. They’re on the computer, but we’d rather see the hard copies when it’s important.

Twilley: Do people ever come along with a water right that they say is vested but didn’t get written down at the time?

de Lipkau: Yes, that happens all the time. In that case, you file a claim of vested right. Then the State Engineer may have a hearing; it may end up in court. Two or more people arguing over and claiming the same water source is a very frequent problem in Nevada.

Manaugh: We’re interested in talking about some of the landmark cases in water rights law. For example, I’m thinking about the ongoing discussion about diverting water from northern Nevada down to the south to help out with Las Vegas and Lake Mead—is that something you’re involved with?

de Lipkau: I used to be involved. What is happening in Las Vegas is a result of that city’s huge growth spurt. Nevada was originally allocated 300,000 acre-feet from the Colorado River in the United States Supreme Court decision that adjudicated the waters of the Colorado between the different states. In that decision, the Lower Basin states received 7.5 million acre-feet and the Upper Basin received the same, which is fine except that there aren’t 14 million acre-feet flowing in the river. The adjudication was based on 1920 records and those just aren’t accurate to today’s reality.


A graph of historical and projected supply and demand on the waters of the Colorado River Basin published by the U.S. Bureau of Reclamation in December 2012.

In any case, Nevada receives 300,000 acre-feet from the Colorado River, plus ground water in the Las Vegas basin, which is in the magnitude of 35,000 acre-feet. The water management team of Las Vegas, which I think a great deal of, said that, because of this growth spurt that took place in the late 80s and early 90s, we need more water. So the water district filed under state law—enacted in 1905, as I mentioned, and substantially amended in 1913—a total of 126 applications to appropriate water in three different counties, and in different groundwater basins. There are 254 groundwater basins in Nevada, and they filed in something like twenty of them. They’ve subsequently dropped some of the applications because they were perhaps leading to an environmental situation, or they involved a federal wildlife preserve, or things like that.


Map showing the South Nevada Water Authority proposed pipeline, pumping water from northern Nevada groundwater basins to supply Las Vegas. The Governor of Utah rejected the proposal in April 2013, casting a yet another question mark over the entire project. Map via KCSG TV.

At this point, the State Engineer has granted a series of applications in White Pine County, which is several hundred miles north of Las Vegas. Las Vegas is now in the process of permitting the right of way to bring the pipeline to the city, to commingle the waters with the Colorado River waters and their groundwater sources. The county won’t get any return flow.

Twilley: So some of this water from a different basin will end up joining the Colorado?

de Lipkau: Yes, a certain percentage of the water delivered by the water district goes back into the river via the sanitary waste system. The state of Nevada gets credit for that. So, for example, if they pump 100,000 acre-feet out in any given year, a certain percent—I think it’s fifty-eight—of that goes back and can be repumped. So the 300,000 acre-feet expands, and is actually 480,000 acre feet.

Twilley: I see: the better you are at returning it, the more you can pump.

de Lipkau: Correct. The less outdoor use, the better. That’s why, if you’ve been to Las Vegas, you’ll know there are brand new and even twenty-year-old subdivisions that have no lawns. They call it native landscaping. Lots of rocks, a few bushes and a couple of trees—and that’s it.

In those cases, virtually all of the water is used in the house, and virtually all of the water that is used in the house returns through the sanitary system.


Xeriscaping on the campus of the University of Las Vegas, Nevada; photo by Andrew Alden.

Manaugh: What’s on the horizon? Are there any larger legislative changes that might affect water rights, or any major new developments in Nevada that might cause water rights conflicts?

de Lipkau: I would say no. What happens, for the most part, for new developments, is that you have to renegotiate existing water rights. In Reno, for example, the State Engineer stopped granting groundwater permits in 1975. In order to get water for development, you have to transfer existing rights to a new use. So, if someone wanted to built a 100-unit condominium on that vacant lot out there, they would have to acquire and buy enough water to serve that size of condo, and then they would have to dedicate and give that volume of water to the water purveyor, which is the local water company. That’s how they do it here.

Twilley: Where would they buy that water from?

de Lipkau: They’d likely have to buy it from a farmer. There’s an open market for water rights.

Twilley: Any farmer?

de Lipkau: It’s got to be in the same valley. It can be a pretty competitive market. During the heyday, in 2004—and this will shock you—an acre-foot would go for upwards of $25,000. It could go as high, in an extreme case, as $50,000.

Twilley: The farmers were sitting on a goldmine.


Irrigated farmland in Nevada; photo via a realtor who specializes in transactions involving ranch water rights.

de Lipkau: Yes, they were. Now, it’s more like $6,000, maybe even $5,000. It’s gone down by eighty-five to ninety percent. There’s no market because there’s no development. There are still some mining companies that have had to buy farms to transfer the water to their mining operations, but the market has gone way down.

Now, to give you some context, one acre-foot would probably serve two houses annually. I have a water meter, so I know that I use about half an acre-foot a year. Actually, during the winter, the water meter reads about one hundred gallons a day with just my wife and I—and I have no idea where that goes. During the summer, when you’re outdoors watering—and I don’t have a big lawn or anything—you use a heck of a lot more.

The basic premise in Nevada water law is when the State Engineer sees an application, he’s required to deny it if one of three things is true. He has to deny it if there’s no un-appropriated water in the proposed source supplying the water. In this watershed—Truckee Meadows—all the groundwater is already taken, so he will deny it on that ground. That’s why new development relies on transfers. The other ground for denial is based on whether the granting of the application will tend to impair the value of the existing rights. What that means is that you can’t give permission for a well too close to another well. “Too close” is an engineering call by the State Engineer based on hydrology and the cone of depression. When a well pumps water, it creates a cone of depression as the water above it drains to the pump. If you have too many wells too close together, these cones of depression will overlap and the water level will go down.

The third ground for denial is whether the granting of the application would tend to be detrimental to the public interest, which is pretty much undefined. That third reason, in itself, is very, very seldom used as the sole grounds to deny an application—I can think of maybe three examples in this state.


A rain chart of the United States showing areas with more than twenty inches of rain per year (the minimum required for non-irrigated agricultre) in varying shades of grey, and those with less than twenty in white. From John Wesley Powell's 1878 Report on the Lands of the Arid Region of the United States. Via the University of Alabama.

Twilley: Are there any changes you would like to see in Nevada’s water law?

de Lipkau: I’d like to undo some statutes. The legislature sometimes attempts to add to the water law without an understanding of what the effect is. These new statutes look pretty innocuous on their face, but they are a huge detriment to the intended water user. For example, there’s one new statute that says when you have a trans-basin diversion, meaning that you are planning to move water from one basin to the other, if the amount being moved is more than 250 acre-feet, you have to prepare—or pay for the State Engineer to prepare—an inventory of the basin from which the water comes.

It’s kind of a make-work deal. One little tiny town in Nevada got caught up in that statute, and they’re dead in the water. The State Engineer doesn’t have the staff to go out and prepare this study. It’s happened to mining companies, but they have the $100,000 or $250,000 to prepare this inventory that nobody looks at. It’s supposed to be a snapshot in time, but if the snapshot in time is from the first week in June, and the springs are flowing, it bears no relation if you do it during the last week in January.

Twilley: What was the motivation behind that legislation?

de Lipkau: It was political. I sarcastically say sometimes that the legislature wants to make water when water is not there, because their constituents or their corporate supporters are complaining that the State Engineer won’t grant any permits. Special legislation is sometimes made in an attempt to make him have to grant permits. Or, if there’s a project that people want stopped, like the Las Vegas Water Importation Program, then it’s a case of throwing up as many legislative roadblocks as we can.

That’s the kind of stuff I’d like to see eliminated. I’d like to get back to what it was thirty years ago. It would be a lot less political, which would streamline the process and make it easier for the applicant.

Then there’s another statute that I personally don’t care for, which is that’s anybody can file a protest to any application. For example, I can personally file a protest against the next application filed in Elko County, which is three hundred miles away, just because.

Twilley: So any Nevadan can protest any application made in the state?

de Lipkau: No, no—anyone can protest. You can file. It doesn’t make any sense. In my mind, the only reason to protest that application in Elko would be if it’s going to hurt my water right. But it doesn’t have to hurt my water right—I can protest it if I just don’t like it. If I don’t like farming or I don’t like mining or I don’t like development, I can protest, and that will bog up everything for six months or a couple years, and then I can appeal it to the district court, too.

Manaugh: So, in your mind, a protest should only be filed by people who actually have water rights in the same basin?

de Lipkau: Correct. A protest should be filed by someone who has a legitimate standing, to put it in legal terminology.


A detail showing Reno from John Wesley Powell’s 1890 map of the "Arid Region of the United States, showing Drainage Districts,” published in the Eleventh Annual Report of the U.S. Geological Survey. Via the Aqueous Advisor's blog, where a larger PDF version is available.

Manaugh: Given the scarcity of water in the American West in general, and thus the potential for future conflict, we’d love to get your thoughts on John Wesley Powell’s proposal for governing the American West according to drainage basins. Do you think that Powell’s proposal has merit?

de Lipkau: I do. Aligning the boundaries of governance units—say, states—with hydrologic units makes a great deal of sense to facilitate coherent management policies. Having a state line go through the middle of an agricultural area that is irrigated from a single drainage basin is a recipe for dispute.

As an example, take the border between California and Nevada, which was finally decreed by the Supreme Court in 1980 after more than a hundred years of conflict, sometimes physical as well as legal. Much of the ongoing contention over the management of Lake Tahoe and the source of the Truckee River could have been avoided if that boundary had followed the Sierra crest line rather than following the 120th meridian right through the middle of Lake Tahoe, as the territory—then State—of Nevada originally proposed.

So I think Powell’s proposal has a great deal of merit—although it might well have resulted in less work for me.


The congressional acts that created the Nevada Territory in 1861, and then the State of Nevada in 1864, provided for a hydrological western boundary at the Sierra Nevada crest line—if the California state legislature would agree to change its existing boundary from 120 degrees longitude. California declined, leading to a variety of interstate water rights issues that persist to this day. Maps via this Tahoe Nuggets article on the California-Nevada border war, originally published in Professional Surveyor, January 2002.

Twilley: Finally, I’m curious about something I was told at Venue’s launch party, which is that Reno’s Truckee River is the most litigated river in America. Is that true? And, if so, why?

de Lipkau: I’d say the answer is yes. An adjudication is the judicial means of determining the relative rights to all the waters of a stream or river system. The Truckee River Adjudication Suit was first filed by the United States in the teens. It was a federal action because the Truckee is an interstate stream, meaning it starts in California, at Lake Tahoe, and it ends in Nevada, at Pyramid Lake.

I’ll give you the short version. In 1926, an injunction was granted and the parties followed the injunction and were bound by the injunction until 1944, when the final decision or decree was issued by the United States Federal District Court. The decree allocated all of the waters of the Truckee River to the farmers in the Truckee Meadows valley, to the Sierra Pacific Power Company, which supplied Reno and Sparks, and to irrigate the Newlands Project.

That was the country’s first reclamation project, and it came out of a piece of legislation authored by Senator Newlands in 1902, which authorized the construction of Derby Dam on the Truckee. The dam split the waters at that point, with a portion going to irrigate the farmland near Fallon, under the control of the Truckee Carson Irrigation District, and the balance going to Pyramid Lake.


Derby Dam, twenty miles east of Reno on the Truckee River, was the first project of the brand new U.S. Reclamation Service (today’s Bureau of Reclamation), organized under the Reclamation Act of 1902, which committed the Federal Government to construct the hydraulic infrastructure necessary to irrigate the West. Photo via UNR.

In the 1944 decree, which is called the Orr Ditch Decree, the Pyramid Lake tribe was given approximately 30,000 acres’ worth of water. The Pyramid Lake Reservation was set aside by the president in 1859. Therefore, they had the highest priority on the system.

What has happened over the years is that the tribe wants more water. They want the waters of Pyramid Lake maintained as a fishery, and there has been constant litigation since about 1968. It eventually went all the way to the United States Supreme Court in U.S.A. vs. Nevada. In 1983, the Supreme Court said that the Indians were out of luck and that their rights were fully determined in the Orr Ditch Decree—the litigation that was final in 1944. Ever since then, the tribe has been bringing various actions to put more water in Pyramid Lake and lessen the diversion of water by others, mostly the Truckee Carson Irrigation District.

I suppose the end result that the tribe wants is that the diversion of the Derby Dam be shut down, and all the waters of the Truckee River that are not used upstream left to flow into Pyramid Lake for a fishery.

Twilley: When the original adjudication was determined, why wasn’t the fishery allocated an adequate supply?

de Lipkau: Because, at that time, the fishery was not important. In 1902, in the era of the Newlands Act, farming and opening up the west to agriculture was the primary concern of Congress. At that point, more than one hundred years ago, converting sagebrush lands to productive farmlands was considered to be in the public interest.

Now, people argue that it’s not—that farming is not so good and that the water is better used for environmental and fishery purposes. Pyramid Lake is the end or terminus of the Truckee River. It’s a dead lake, in other words, and the salinity is rising because there’s no outlet and there’s no way to freshen it up. So, through evaporation, water escapes into the atmosphere, and the solids—the salts—stay in there.


Timothy O’Sullivan, "Rock Formations, Pyramid Lake, Nevada," 1867. Collection of the Nevada Museum of Art, The Altered Landscape, Carol Franc Buck Collection.


Mark Klett, "Rephotographic Survey Project, Pyramid Isle, Pyramid Lake, Nevada (Site #79-33)," 1979/1984–85. Collection of the Nevada Museum of Art, The Altered Landscape, Carol Franc Buck Collection.

Twilley: When you go through this adjudication process and determine the relative rights of different users to water, is the law written in such a way as to account for the fact that people’s priorities will shift over time?

de Lipkau: As far as changes in uses and their perceived benefits over time, the Truckee River Decree expressly authorizes changes pursuant to law. The language is there to say that the existing law and the existing water right is always subject to change in conformity to future legal determination, and that is true of any legitimate water legislation in Nevada.

Priority, on the other hand, does not shift. The water law follows the mining law. We all know how priority works in mining from our eighth grade civics classes on the California Gold Rush in the 1840s. We learned then, and I relearned much later, that the first person to stake a claim has priority on that mineral resource.

The first water rights case came out of California in 1855. It had to do with miners diverting water out of small creeks to wash the gold out of the rock in sluice boxes. The California Supreme Court said, with no legal authority, that the way to make it fair and to make it work was priority appropriation. That means that the first person who diverted water from the creek had the first priority. The second person who diverted water from the creek had the second priority, and so on. In times of shortage, the last priority cuts off completely, then the next to last, and so on, till the first appropriator—the earliest priority—gets it all. And priority doesn’t change.

Nevada came along in 1866 and affirmed that decision, and so priority of appropriation is also the basis of Nevada’s water law.

Now, a system in which all the users are forced to cut back by a certain percentage is called correlative rights. But that’s not the case here; with the Truckee, it’s strict priority.



Photo courtesy Scott McGuire.

Several years ago, when half of Venue worked on the editorial staff at Dwell magazine, we took a daytrip down to the head office of The North Face to visit their equipment design team and learn more about the architecture of tents.

"As a form of minor architecture," the resulting short article explained, "tents are strangely overlooked. They are portable, temporary, and designed to withstand even the most extreme conditions, but they are usually viewed as simple sporting goods. They are something between a large backpack and outdoor lifestyle gear—certainly not small buildings. But what might an architect learn from the structure and design of a well-made tent?"

Amongst the group of people we spoke with that day was outdoor equipment strategist Scott McGuire, an intense, articulate, and highly focused advocate for all things outdoors. As seen through Scott's eyes, the flexibility, portability, ease of use, and multi-contextual possibilities of outdoor equipment design began to suggest a more effective realization, we thought, of the avant-garde legacy of 1960s architects like Archigram, who dreamed of impossible instant cities and high-tech nomadic settlements in the middle of nowhere.

Scott McGuire talks to Venue in Lee Vining, California; Mono Lake can be seen in the background.

Intrigued by his perspective on the ways in which outdoor gear can both constrain and expand the ways in which human beings move around in and inhabit wild landscapes, Venue was thrilled to catch up with Scott at a deli in Lee Vining, California, near his Eastern Sierra home.

McGuire, who recently left The North Face to set up his own business, called The Mountain Lab, was beyond generous with his time and expertise, happily answering our questions as the sun set over Mono Lake in the distance. His answers combined a lifelong outdoor enthusiast's understanding of the natural environment with a granular, almost anthropological analysis of the activities that humans like to perform in those contexts, as well as a designer's eye for form, function, and material choices.

Indeed, as Scott's description of the design process makes clear in the following interview, a 40-liter mountaineering pack is revealed literally as a sculpture produced by the interaction between the human body and a particular landscape: the twist to squeeze through a crevasse, or the backward tilt of the head during a belay.

Our conversation ranged from geographic and generational differences in outdoor experiences to the emerging spatial technologies of the U.S. military, and from the rise of BMX and the X Games to the city itself as the new "outdoors," offering a fascinating perspective on the unexpected ways in which technical equipment can both enable and redefine our relationship with extreme environments.

• • •

Geoff Manaugh: I’d like to start by asking you about the constraints you face in the design of outdoor athletic equipment, and how that affects the resulting product. For instance, in designing architecture, you might think about factors such as a building’s visual impact, its environmental performance, or the historic context of where your future structure is meant to be. But if you’re designing something like a tent—a kind of athletic architecture, if you will—then you’re talking about factors like portability, aerodynamism, cost, weather-proofing, etc.. What design constraints do you face, and how do you prioritize them?

Scott McGuire: The first thing is always the user. Everything has to be very user-centric, in a way that’s perhaps unlike conventional architecture. You might say, “I’m building a house; it’s about this site; it’s about this view; people are going to live in it in a certain way,” but you would rarely design a house based on whether or not someone has a propensity, for example, to use their kitchen utensils with their left hand or their right hand. But when you’re creating a technical product, you become really myopically focused on how that product interacts with an individual. It’s about establishing who that person is.

Of course, if I’m talking about doing a small technical pack that will hold 40 liters for someone who’s going mountaineering—well, I know that same pack may very well be used by someone riding on a bike as a commuter in New York City. Still, when we’re talking about that product, it’s very much about things like: what’s the person who’s going mountaineering wearing? What are they carrying? Where are they going? What environment are they going to be in? How much wear and tear is their pack going to get? As you study the user, you usually end up discovering a lot of nuances about the way they’ll use the product, and they’re often things you wouldn’t normally think about.

"Mt. Blanc from Le Jardin"; "The Finsteraarhorn"; another view of the Finsteraarhorn; and "Glacier of the Rhone." All photos taken between 1860 and 1890. Courtesy of the U.S. Library of Congress Prints and Photographs Division.

I’ll give you some examples of how that would work. I’ll stick with the 40-liter technical pack, which is the one you usually find in an area that’s high alpine, above 8000 feet, with year-round glaciers, where there’s lots of climbing and mountaineering. What you’re going to find, obviously, is that people are carrying it. They’re moving at a relatively athletic pace. They want to have the ability to fit the pack.

When we think about fit, it’s not as simple as saying: “This person’s got a 34" waist, a 19" back, a 42" chest, and that’s what we need to focus on.” It’s also the fit based off the way someone moves—what I would call the interaction between the user and the device. The way a 65-liter pack fits someone who’s walking down a manicured trail, doing eight miles a day—the height that their knee climbs and the amount that their body twists—is different than the fit of a 40-liter pack for somebody who’s going up a mountain, where they might be climbing a 45-degree slope. Or they might have somebody on belay and they need to be able to look up, so they need to have a tiny pocket of space so that, with a helmet, they can crane their head back and look up at their partner. The pack can’t get in the way of that.

Three 65-liter packs by The North Face, High Sierra, and Kelty, respectively.

Then you add to all that not just an ability to carry weight, but questions like: what does it feel like when an arm comes up to reach for a hold? Or: what happens when you’re trying to twist through a crevasse? There’s a fair amount of time spent really thinking about all of those elements on the body.

And then you run into some really interesting places when you start thinking about how the pack comes off the body. What does everybody do when they come to a stop? They take their packs off, throw them on the ground, and sit on them. So you have to think about how your frame system can carry the load one way, while being carried on someone’s back, but also what happens to that frame system when someone sits on it when it’s on the ground. That really nice zipper pocket on the face, the one that’s so great for getting access at the front of the pack—well, what happens when that thing spends a year lying zipper-down, crammed full of mud, with 150 to 200 pounds of person sitting on top of it? A lot of these observations need to take place in the very beginning, to think through these things.

Mountain climbers, Zermatt, Switzerland (1954); photograph by Toni Frissell, courtesy of the U.S. Library of Congress Prints & Photographs Division.

That’s basically the fit component of the interaction to the person. The second element is really going to be: what goes into the product? What is the user carrying, and how do they access it? Those two questions live in a symbiotic relationship with each other. It’s also not just about what goes in the pack, but when it goes in, when it comes out, and how it goes back in again.

Taking a conventional top design, you have an open bucket; you open the lid; and you put stuff inside. There are shapes that inherently lend themselves to technical packs: they’re slightly tapered at the bottom, so they stay within the lumbar area, keeping the weight centered over the sacrum. That makes it a little easier when those narrow slots are on your waist, and the V-shape of the pack mimics the shape of your shoulders and chest. What it also does is it creates a bucket that can feed stuff down into the bottom. You want to keep your heavier stuff near your center of gravity—you want to keep it low and tight—preferably right underneath the shoulder blades.

But you also need to think about what’s going in there, in what order. Things like an extra shell, or your spare jacket, or the rope you may or may not need—those can all go in the bottom. But what are the things that are coming on and off, all the time? On a technical climb, if you’re wearing a puffy jacket, well, every time you’re hot, that jacket’s going to come off—maybe ten or fifteen times a day. So how does that go in and how do you maintain access to it in the easiest possible way? How do you make sure you’ve got easy access to things like a first aid kit, in case you’ve got to get to it quick? Where does your headlamp sit so that, when it’s late and you’re finally getting the headlamp out, and it’s probably already dark, you know, intuitively, that it’s in this pocket right here and you don’t have to fumble around and find the headlamp and risk having everything else dump out?

The view from Scott McGuire's back porch; photo courtesy Scott McGuire.

And then there are even simpler things, like small pockets for access to things like a point-and-shoot camera that can go in and out quickly, or your lip balm, or that nutritional bar that allows you to get a shot of quick energy. A lot of thought needs to go into where those things go—where pocketing and storage should be, both from an organizational standpoint but also from a load-dispersion standpoint. These are all maybe a little comparable to how an architect might think: it’s about organizing the space, but down to a level of detail that takes into consideration very different people doing very different things with their gear.

Once you’re talking about the load—about what you’re carrying and how that gets managed—the next thing is going to be materials. The materials are so important. Like in conventional architecture and design, materials obviously have an aesthetic appeal. On the business side of it, the value equation is always about cost versus value. For example, there are things that can cost very little but have a very high value based off their perceived benefit: they’re lightweight, durable, attractive. Things can also have a very high cost but not necessarily have a value that the customer perceives, such as highly technical specialized fabrics that may not really contribute a benefit to your average end user. The benefit’s lost. It’s as if you build a house and you install gold pipes—no one sees it. Do they really make the water taste better?

You need to be really careful about those decisions. When you’re talking about the material selection and if somebody has to carry it, then there’s a balance not only in terms of cost versus value, but also around weight versus durability. In a general analysis, you’ve got price, weight, and durability—and, usually, you only get to pick two. You want something that’s really cheap and super lightweight? You give up durability. You want something that’s super durable and incredibly lightweight? It’s going to cost you a lot of money—you give up price.

"Ascension of Mt. Blanc" and Glacier of the Rhone." Photos taken between 1860 and 1890. Courtesy of the U.S. Library of Congress Prints and Photographs Division.

To get back to the example of a 40-liter mountaineering pack, that customer typically is investing in a product that is high-quality, with high-durability, designed to take a lot of abuse. And there’s an expectation there that a slightly more expensive product, with greater durability and less failure potential, has higher value. It’s worth the extra money. There’s a huge difference between someone who’s going for their very first backpacking trip versus the person who’s been training for an objective for the last year. That person doesn’t want, after all the hours spent planning, looking at topo maps, and waiting for the weather window, to be hampered by gear. That person’s going to choose quality and durability over price.

Photo courtesy Scott McGuire.

Manaugh: When it comes to materials, I’m curious if there are things that you or the designers you work with are aware of, that are perfect for certain functions, but they’re so expensive or simply so foreign to the average consumer that the market can’t bear them. In other words, how do you navigate the market with new materials and new designs?

McGuire: One of the Holy Grails here, from a design standpoint, is the side-release buckle. From a functional standpoint, the ability to have a buckle, pop it, have it separate, put it back together, click it, including that audible signal that it’s now secure—that has a simplicity and intuitiveness to it. I think a lot of people in design still look at that and say, gosh, that’s one of the things that’s been around for a long time. But is it the best solution?



It’s always a question of whether you’re building a better mouse trap, or if you’re just trying to do something that’s different—something that’s gimmicky. You’re always balancing what’s unique for the sake of being unique—not necessarily because it’s providing a better solution—versus what’s unique because it’s actually offers a functional improvement.

There are a couple of examples like that. Nobody’s really figured out a better solution than a zipper. But zippers fail; they wear out over a certain period of time. The side-release buckle is a design that is ubiquitous across all packs, and there are different aesthetic treatments to it, but, functionally, they all do the same thing: a two-part click. But there are always people exploring what could be better in that space.

Manaugh: One of the things we talked about a few years ago when I first met you at The North Face was that there are differences in tent design between the North American and the European markets. You mentioned then that, in Europe, campgrounds are so crowded that a different level of privacy is expected from a tent, whereas, in the U.S., you can get away with using much more transparent materials, because you might be the only people at a certain campsite for two or three nights in a row and you don’t need as much privacy.

The REI Half Dome 2 Plus Tent, with and without cover; via REI.

I’m curious, now that you’re doing consulting with different companies, different regions, and different markets, how these sorts of cultural differences play out in the design of outdoor equipment in general.

McGuire: The commercial world has gotten a lot smaller, and the ability now to connect with people in those very different cultures has become much more commonplace. That’s true everywhere, I think. I mean, sitting where we are today, we have a lot of people coming through the Eastern Sierra who have traveled all the way from Europe.

I actually just talked to a guy over there in the parking lot on a motorcycle who’s over here from Germany, on his way to Jackson Hole. He said he happened to be swinging by here on his way from Atlanta. I still haven’t figured out the geographical connection to Atlanta, if you’re on your way to Wyoming, but…

Manaugh: [laughs] He was too embarrassed to ask for directions.

McGuire: But it is interesting to see a foreign product in a local environment—you can see where it seems a little odd, and you can try to find out why those little moments are there in the design. There’s also a need to expose yourself to those other places. That means being in Europe and seeing that user; it means being in Japan and seeing that user.

The Big Agnes Copper Spur UL1 Tent with and without cover; via REI.

Oftentimes, there are unique, local solutions to global problems, and these can influence global gear designs and become ubiquitous. Just as often, there are very specific needs to solve a local issue that are non-transferable. I’ll give you a classic case in point. We just talked about mountaineering in the Eastern Sierras. Well, all of our access is car-based. Everybody drives to a trail head, gets out of their car, and walks up a trail that is highly likely to have no one else on it, and, from there, they end up at the place they’re climbing, and so on. It’s not uncommon for people here to go out and, from the time they leave their car until they bag their peak and come back, they never see anybody—not even a trace of another person.

But in Chamonix, over in France, there’s a parade from 7:00 am every morning. If you sit at the base, where the trail goes up Mont Blanc, you can watch people coming down with their coffee and their croissant, and they’ve got their crampons in the back of their pack. They’ve got all of their gear. They’re going to climb into a tightly packed gondola with 50 or even 100 other people, and that’s all before they even start their climb.

Two photos of architecture on the Aiguille du Midi in Chamonix, France; uncredited; found via Google Image Search.

So, here, in the Eastern Sierra, you can just say, Jed Clampett-style, eh, my crampons are over here, my ice axe is here, and, as long as my hiking partner isn’t within five feet of me, well—hook, swing—who cares? But when people start getting into a packed tram system in Chamonix, and they’ve all got to scoot together, you really need to start thinking about how you protect all those sharp points. How do you make sure no one’s exposed to those? You’ve got to know where those are.

Those differences are where I think a lot of the challenges are. It’s not necessarily intuitive that something that’s highly successful in one region will automatically have traction in another. Creating a globalized product in a highly specialized market can be very challenging and, oftentimes, there has to be a tolerance. You either have to have tolerance for a broader product assortment to meet regional needs, or you have to accept the fact that you may have a product that’s not specialized enough to hit the local super-user, because you’ve traded off specificity for an ambiguity that will reach more people.

Nicola Twilley: It seems to me that, although in your work you’re responding to the user, the user is also responding to the landscape—so, in effect, you’re responding to the landscape, too. When you look at a landscape, do you more typically see it in terms of what sort of activities you might do there, or are you looking at the landscape from the perspective of the gear you might need?

McGuire: In terms of gear, you do see the differences. I mean, take the west coast of the United States. The climbing conditions for a 40-liter pack in the North Cascades involve a much wetter environment, with much wetter snow and a more volatile climate all around, as far as sudden changes in weather go. But, here in the Eastern Sierra, you can probably plan on the fact that it’s not going to get any precipitation for the next 90 days. You don’t really have to think about bringing a ton of rain gear with you, because we just don’t get storms that show up out of nowhere or weather patterns that suddenly convert. That nuance in meteorological conditions will change what the customer’s wearing, which will change how their pack fits, which will change what they’re carrying, which will change how they store things inside the pack, because of what comes on and off and what they need access to. All those things come into effect.

Then you have geographic nuances—the way the different physical characteristics of the environment that you’re in are going to damage the pack. For example, if you are in a volcanic area, where you’re doing a lot of chimneying, you’re going to end up with a high abrasion area. The impacts of a granite environment and a lot of scree will have a different impact on gear than someone in a classic glacier environment.

So there are geologic elements and there are meteorological elements—and both have an impact on the product itself and an impact on what the user does there. The gear you need in a landscape and the activities you are going to do in that landscape are always going to feed into one another.

Twilley: So you can’t optimize a technical pack for the Eastern Sierra and for climbing in Washington State simultaneously, right? That wouldn’t be the same pack?

McGuire: True. All design at some point is a compromise. If you use vehicles as an analogy, the SUV is the ultimate compromise. It doesn’t really carry everything and it doesn’t drive like a sports car, but it’s still managed to fulfill this niche for people. It does enough things pretty well that it allows them to find their solution in one product. That’s an elusive role for packs. It’s why people who end up being pretty active rarely own one pack—they own two, three, or four of different literages, different weights, different carrying capacities, and different materials.

An early U.S. Geological Survey field camp; photo courtesy of the USGS/U.S. Department of the Interior.

Manaugh: This is a fairly silly question, but I’m curious if, on a day where you have a lot of free time—you’re lying in a hammock in the mountains somewhere—you ever find yourself thinking that you could design a pack that would be absolutely perfect, but only for a very, very specific place. It would be the ultimate pack for a particular trail in Arizona—but for that trail only. It would be useless in Utah or on a trail in the Alps. And maybe it would cost $5,000—but it’s the perfect pack. Do you have dream gear like that?

McGuire: [laughs, pauses] At the end of the day, that’s what every gear head does. Not just the pack—they’re on the quest for the perfect kit. Unfortunately, what happens is that a large factor in enjoying the outdoor environment is wanderlust. As soon as your kit is perfect in one place, not only does the gear itself change over time or through use, but, usually, your reaction is, “Great! Now that I’ve experienced this, let me go to this other place…” And all of your metrics have been thrown off. You start building the perfect kit all over again. So, as soon as that’s obtainable, your own interest level changes, and it goes away.

Of course, I’m not actually a designer, in that I don’t really put pen to paper. I work on strategy and process, with people who do the pen-to-paper side of things—people who are highly creative and sometimes even have an arts background.

Courtesy Osprey Packs.

One of the best examples of that kind of designer, and one of the people I admire the most in this space, is Mike Pfotenhauer, who’s the owner and designer of Osprey Packs. Mike is classically trained as a sculptor so, when you look at Mike’s pack design, there’s an aesthetic to his product that speaks to his ability as a sculptor. It’s very rare that you see straight lines. I’m convinced that if Mike could get someone to weave for him a curved webbing, his packs would all have curved webbing on them. He wants things to have this organic flow, which means there’s a signature to his packs, because he’s only worked on one brand as an owner and designer for his entire career.

Courtesy Osprey Packs.

But, when you look at the actual function of his designs, he’s a real user. He’s a backpacker. He doesn’t let his aesthetic override the fact that, as a user, he knows his end product has to work. Case in point: take the webbing. At the end of the day, something needs to be able to pull and compress. If the pieces of webbing that are the most effective at doing that require straight lines to pull, then he knows the pack’s aesthetic needs to give way to the fact that there’s a functional need calling for something different.

Courtesy Osprey Packs.

Twilley: Given the importance of the user and the landscape, can you talk a little about how this gear is tested? Are there labs filled with simulated environments where packs are repeatedly rubbed against things, or sprayed with water and then flash-frozen to see what happens?

McGuire: There are three legitimate forms of testing. There’s the ASTM/EN, with the ASTM being the American Standard Testing Method and EN being the European Norm. These are scientific methodologies around proving whether something’s working in the right way. Those are usually at an item level. Then, there are ASTM things around complete packages like insulation warmth ratings for sleeping bags. There are rules around how to properly gauge the square footage and volume of a tent or the volume of the inside of a pack. So these are metrics that can be tested.

On the testing from a durability standpoint, oftentimes it’s specific devices that measure individual materials.

Twilley: Oh, so it’s not the complete pack. You just test a particular buckle, for example.

McGuire: Yeah. You might pull-test the buckle to make sure it can survive a 300-pound pull test. You might take a piece of material and put it on a Taber machine and see how many cycles it takes until the machine rubs a hole through it to see what the material’s abrasion durability is. Or you might do a tensile tear strength test to see how a tear would propagate in a rip-stop and how functional the rip-stop is.

These are functional tests that are relatively close to reality, but then there are also reality tests. The classic example of that is a lot of factories and companies will have access to things like very, very large commercial dryers; somebody has taken the time to open them up and bolt 2x4s and climbing holds and all kinds of stuff to the inside of the dryer. Then you throw a pack or a piece of luggage onto it, turn the dryer on, and let it just beat the daylights out of something till you see where your failures are.

Or you’ll have jerk tests on handles, where you’ll have a weight that—over and over again—will simulate the grabbing of a shoulder strap with a 60-pound pack and throwing it over your shoulder. What does that do to that seam? You’ll simulate it over and over again, and you’ll see, as you grab the shoulder strap and yank on it, if you yank a little this way or you yank a little that way, you end up putting different seam stresses on each place.

These sorts of reality-based testing devices are, oftentimes, custom manufactured. They’re not necessarily scientific. They’ll run through the cycles so that you see where there need to be improvements, but there’s not really a standardized test to measure it against.

But, still, today, in this industry, nothing beats human use.

Twilley: You mean field-testing?

McGuire: Product failures in this space are rarely attributable only to one thing. It’s almost always systematic. For instance, the shoulder strap didn’t fail because it was getting pulled up and down; the shoulder strap failed because of the way it was stitched, and then the way it was worn by the user, which created a spot where it sat on the shoulder blade, and that wore the stitching down over the course of a 600-mile trip, which then exposed the motion to a failure. An abrasion test on its own or a jerk test on its own wouldn’t expose that, but, in real world use, those two things combined expose a weakness. This is where human testing really is the quintessential component to make sure things work right.

This is also why so many people in design—in fact, every single person I know who was an inventor of an outdoor product in the 50s and 60s, during the real heyday of our industry—came into prominence not because they were designers. They were users who, by necessity, turned to design to solve a problem.

Image courtesy of Skipedia.

This is how Scot Schmidt created the original Steep Tech gear for North Face. Scot didn’t want to be a clothing designer—at least, from everything I heard from him. Scot just wanted to be a skier who didn’t have to deal with duct taping his knees and shoulders because he was skiing in such horrendous conditions and he kept tearing the fabric.

The original North Face Mountain Light jacket with its "iconic black shoulder"; photo courtesy ZONE7STYLE.

The iconic black shoulder of the original North Face Mountain Light jacket came about not because someone thought, “Wow, straight lines and bold blocking is going to look awesome.” It came about because someone said, “I need a super-durable material because, when I throw my skis over my shoulder to hike up this ridge, the straight skis of the 1970s and 80s rub a hole through my jacket”—and the only thing available at the time was a 1680 ballistic nylon that only came in black because it was for the military.

You end up with an iconic design that was never intended to be an iconic design. It just happened that way because of a specific need, and it evolved to become an icon.

Photo courtesy The North Face.

Twilley: Are there landscapes that gear innovation has opened up, in a way? Obviously, there are extreme landscapes, like Mt. Everest or Antarctica, where the right gear can be the difference between making it or not, but are other types of landscapes now opening up through innovations in outdoors gear?

McGuire: For sure. I think ever since people started pushing the limits of where they could survive, the types of landscapes available to people have changed. There are the extremes, like you mention, of being up in the Himalayas—up at high altitude—where gear has had an absolutely huge impact. But I would say that one of the challenges in our industry has actually been that, for the most part, for better or worse, most of the impacts on design from extreme environments happened more than a decade ago.

What’s happening today, I think, that’s now driving some of the greatest innovation aren’t the extremes of the environment, but what people are trying to do in that environment on either end. It’s the book-ends of either extreme. In other words, design is being driven now by people who are going much farther, much faster, and much harder than they ever did before.

Take the idea of building a product for hiking the Pacific Crest Trail—which is 2,400 miles. Typically, that would take four to six months—and, in 1970 or 1980, that was a pretty extreme environment. Now, that environment hasn’t really changed—there’s global warming, of course, so there have been changes in the glaciers and so on—but, effectively, that trail is the same as it was for the past forty or fifty years. What has changed now is that people are coming in and saying: “I want to do the entire Pacific Crest Trail, and I want to do it in ninety days. Instead of doing eight to ten miles a day, I want to do twenty-five or thirty miles a day.” In order to do that, people who were comfortable with carrying a 60-pound pack on the trip are now saying that there’s no way they’d go out there with more than 30 pounds. In fact, on the far end of that, people are saying they should be perfectly comfortable, and fully safe and functional, with only a 15-pound pack. Put all that together, and that necessitates a new kind of design.

"Aletsch Glacier"; "Lac des Morts, Grimsell"; and"Aletsch Glacier, Eggischorn." All photos taken between 1860 and 1890. Courtesy of the U.S. Library of Congress Prints and Photographs Division.

But there’s also the other extreme. We have a society that is spending less and less time in the outdoors. What we’re finding, on the other end, is that the goal is to just make sure the approachability of the outdoors is simple enough, and convenient enough, and affordable enough, that, when people are trading a weekend in front of their Wii for a weekend taking their family camping on the side of a river, that it’s not intimidating. It’s not scary. For instance, how do you design a tent for someone who’s never set up a tent before, or who thinks a tent is so expensive that it’s a barrier to entry? A tent that’s not so complex that I can’t even imagine using it? Or a tent that’s not so small that I can’t stand up and change my clothes? What does that look like?

So you have these very divergent activities, these very different spaces, but, in each one, you have people who basically need something—they need a piece of gear or equipment—that can allow them to have this experience. That’s where I think most of the innovations have come from in the last decade. It’s not the middle ground. It’s these extreme fringes on either side.

Manaugh: Do you find, ironically, that the guy who wants to be home playing Wii all day in the suburbs is actually the more challenging design client?

McGuire: Well, let me back up a bit. If you go to a company like Procter & Gamble, for example, you find people there who are working as industrial designers, and they’re trying to think like a customer who they just might not be. But, in this industry, you have people who are really just trying to solve their own problems, in their own tinkering way.

Photos courtesy of the Outdoor Retailer show.

The Outdoor Retailer trade show is a very unique environment, in that regard. It’s like a tribe. You walk into that outdoor retailer environment and, if you’re in the outdoor industry, you can see straightaway who’s there and who’s not there—meaning, who’s part of the tribe and who’s a visitor. It’s a group of a lot of the same people, over decades now, doing a lot of the same things. You might see different companies and different brands over time, but what you don’t see is a lot of people from outside of that space showing up there. If you’re an outsider and you show up—if you’re trying to pose like you’re there, and trying to sell into that space—that group smells your inauthenticity right away. But, now, this tribe mentality is starting to recognize that the future of the industry is outside of our own doors. In fact, not enough people are finding their way into the tribe on their own and we have to bring in more people.

Photos courtesy of the Outdoor Retailer show.

So the industry itself has been wrestling with this. How do we go out and approach someone? I’ll use an analogy. In the industry, there have been three rings of people: there’s your hardcore ring of people who are absolute purists: “I make it all myself. And I’m so badass, no one even knows where I go.”

They’re almost elitist in their pursuit of their sport. But then you have another side, which is a group of people who like the outdoors, but they’ve recognized that there’s commercial value there. They are mostly driven by the business side of it. They’re people who want to work in the outdoor company sector because they like the idea of going to work in a T-shirt and jeans, versus wearing a suit, and their skills lend themselves to this space, but you also kind of know that a person like that isn’t really from here because their core motivation is: “Wow, we can make money off of this!”

So the ex-suits don’t get the hardcores, and the hardcores resent the fact that all these ex-suits are showing up. Then there’s this tiny group in the middle who are interested in the business side, but they also come from the hardcore side at one point—and, what’s interesting is that all of these people in this group of three circles in the industry right now are wondering: “Who’s going to come in from outside our three circles? Who’s going to drive the business going forward? Who are those people?”

Photos courtesy of the Outdoor Retailer show.

There were some good industry numbers that came out recently where, for the first time, we’re seeing the number of young people getting exposed to the outdoors is on a slight uptick. I would say it’s encouraging news. It’s not good news, because we still have a long way to go. But, from a design standpoint in the industry, that’s something that appeals both to the suits—“Wow, new customers! More money!”—and also that center group, along with the old hardcores, who love seeing the interest and the energy grow. They all see that, from a culture standpoint, we need this: the stronger our tribe is—the more people who come into it—the better it’s all going to be.

But I have a love/hate relationship with some of the solutions that have come up in the past few years. Here, in the Eastern Sierras, we have a pretty robust program where you can get on the phone in Los Angeles and call a company that will deliver a camping trailer to a campground here for you. You drive up in your little economy car from the city, and you pull into a campground, and the there’s this 26-foot trailer sitting there waiting for you, with all the comforts of home. It’s got a mattress; it’s got running water; it’s got a toilet; the refrigerator is eve pre-stocked. The stoves are there. There’s propane in the tanks. It’s like a pop-up hotel.

The “love” part of me is that more people are now actually making the trip. It’s like a gateway drug. Somebody who might not have got in their car is at least opening their door at 6:00 in the morning and smelling trees and not being in a parking lot at a hotel somewhere. So it’s a start.

The difference, though—the “hate” part of me—is that there’s nothing like being out there in the dark, putting a tent up, finding a site. You know, maybe I’m a little bit of a sadomasochist in this regard. But, for me, when you’re in the outdoors, tripping over the picnic table and trying to figure out where the guylines go, and dropping stakes and wondering if you remembered to put them all in… Not that I want to see people suffer! But part of it is actually about the dirt under the fingernails—it’s that sharp rock under the tent that keeps you awake at night.

But, as long as people are making the trip, and, from a design standpoint, as long as we’re making a product that eases that transition for people as much as possible…

The LogPlug and RokPlug projects by Archigram, courtesy of the Archigram Archival Project at the University of Westminster.

Manaugh: It’s funny, your trailer example actually reminded me of this group of architectural designers in England in the 1960s/early 70s called Archigram. They were somewhere between science fiction and Woodstock. They had this one series of designs—and it was all totally speculative—for fake logs with electrical outlets that could be put out in the woods somewhere, and even fake rocks that could act as speakers, and so on.

The LogPlug and RokPlug projects by Archigram, courtesy of the Archigram Archival Project at the University of Westminster.

But the funny thing is that the intention of the project was to get more people in 1960s England out of their middle-class houses and into the wilderness, to experience a non-urban environment. Of course, though, the perhaps unanticipated side effect of a proposal like that is that they were actually just extending the city out into the woods, letting you take all these ridiculous things, like TVs and toasters, in the great outdoors with you, things that you don’t ever really need in that environment in the first place.

The LogPlug and RokPlug projects by Archigram, courtesy of the Archigram Archival Project at the University of Westminster.

In other words, it seems like an almost impossibly thin line between enticing people to go out into a new environment versus simply taking their ubiquitous home environment and infecting someplace new with it. The next thing you know, the woods are just like London and the Eastern Sierra are just like Los Angeles.

REI's portable, pop-up, outdoor Camp Kitchen. Are outdoor equipment manufacturers the true inheritors of Archigram's speculative design mantle?

In any case, I wanted to return to something you said earlier about ballistic nylon materials that had originally been developed by the military. Are you still finding materials and technical innovations coming out of the military that can be “civilianized,” so to speak, for use by outdoors enthusiasts? For instance, I recently read that the military has developed silent Velcro, which seems like it could be useful for backpackers.

McGuire: Definitely, yes. On the military side of things, what’s different now, is that, except on very rare occasions, people today are not humping huge loads over long distances to fight wars. Soldiers are now incredibly mobile. They’re vehicle-based; they move in; they move out; they carry just what they need; they get the job done; and they’re gone. We have a lot of people coming back from wars today—and I’m not at all taking away from what they’re doing—but their war experience is unlike even just a few generations ago, where you put your pack on and everything you needed was in your pack and you were gone out in the wilderness somewhere for a year. We increasingly have soldiers who get in a Humvee, go out for a day, maybe two days, and then they’re back at base.

"New York Central Issue Facility Strives to Get National Guard Troops Latest Gear." Image and caption courtesy of the U.S. Army.

What I think we’re seeing, culturally, is a lot like this. The patience for long-term adventures is waning. People want to go out and have an experience. They want it to be quick. They want it to be impactful. They want it to be memorable. And, to be honest, they want it to be easy. It’s the “I want to see Europe in five days and here are all my pictures” thing. It’s speed and efficiency. Well, one area where the military is lending some benefit is that they’re developing a lot of specialized gear for these in quick/out quick, intense experiences. You’re seeing things like the MOLLE system—what is it, Modular, Lightweight, Load-carrying Equipment?—and that modularity is seeping out of the military to influence outdoor gear design, where you’re able to have a base system that can increase or decrease in size, depending on the specifics of your day and what you’re going to go out and do. These are influences that that are now starting to show up.

"The Army is able to swiftly deploy soldiers where they're needed and part of that is ensuring soldiers are properly equipped. The materials they need-they need fast, and that's where a rapid fielding initiative team comes in." Image and caption courtesy of the U.S. Army.

And there are some strong crossovers, in things like hydration, that are now becoming much more ubiquitous. We aren’t seeing that crossover quite as influentially as the original A-frame tents, or the development of sleeping bags coming out of World War I and World War II, but we’re certainly still seeing it. But I would say that the most significant recent impact are things like GPS—highly specialized technical solutions that make things work much better and much easier, and that don’t take up a lot of space.

GPS is military-based, and the ability to know where you are, where you’re going, and how to get back, without having to rely on map knowledge, has opened up all kinds of confidence for people to get into new places. Personally, I love using a GPS, but I still think you ought to know which way north is and how to read a map—because batteries die.

We’re also still seeing new materials come out of the military, like super-lightweight parachute fabrics that are allowing people to have highly tear-resistant, lighter-weight equipment. And, even with helmets, the foams used in lighter-weight, highly protective helmets are changing, mostly as a result of IEDs.

So, yes, we are seeing elements of the military trickle into outdoor gear. I just think that, with the needs of the military being what they are today, and the way that wars are being fought now, it just happens to serendipitously fall in line with a cultural desire for short, fast, light outdoors experiences—you’re done and you’re back. It is a bizarre overlap, but you’d be hard-pressed to say it’s attributable to one or the other.

Manaugh: To build on that question of cultural shifts, when you said that more kids are starting to go outdoors, I immediately wondered if at least part of that is due to a pretty huge rise in popularity of things like alternative sports: X Games, BMX, skateboarding, and so on, all those urban subcultures that I grew up with, but that had no real media attention at the time. They’re now becoming more and more mainstream. I suppose my question is: is the city its own form of “outdoors” now, and are alternative urban sports a kind of indirect way of getting kids interested in forests, or rock-climbing, or going bouldering?

Twilley: I might even add to that, to speculate that kids exploring sewers or breaking into abandoned steel mills are perhaps experiencing the same kind of thrills that the first generation of outdoors enthusiasts did in the West. Is urban exploration the next big opportunity for gear in the future, given our increasingly urbanized world?

McGuire: I think I’d say yes to both. Something that’s endemic to the outdoor industry is, first and foremost, the idea of having an experience. It’s about stretching where your comfort level is. So I would say pick whichever sport you want—skate, snowboard, mountain bike—those sports have allowed people to stretch what they believe they’re capable of. Whether you think that what people are doing on the west shore of Vancouver with mountain biking, and pushing the mountain biking free-ride space, is good or not, at the end of the day what we have is a generation of people who are having an experience that’s not inside of four walls. They’re pushing their comfort levels, and they’re having an experience and a memory that involves fresh air.

Martin Söderström in a timelapse jump, courtesy of Red Bull.

What we’re seeing among the youngest generation today is there is much less identity around sport specificity. I’m almost 40. When I grew up, you were a surfer or you were a skater or you were a climber or you were a road biker. But kids today don’t think anything like that—they think, “I do all of those things!” Why would I not be someone who is a skier who’s also into bouldering who’s taking up trail running and who competes in Wii dance competitions? Why can’t I be that person? There’s a sense that I will be whoever I want to be, whenever, and of course I will be multifaceted.

When we start talking about trying to build gear for those kids, you want to make sure that the gear allows them to do the current activity—and that might be more urban-influenced, like skating and biking—but, as they grow and stretch, it isn’t a hindrance to their next thing. Does your free-ride hydration pack let you try trail running? I think people are discovering on their own where their next challenge is, but the way they’re discovering it, and the tools they’re using to discover it, aren’t yet in the view of the popular side of the industry.


Spanish freerider Andreu Lacondeguy from Where The Trail Ends; photo by Blake Jorgenson for the Red Bull Content Pool, courtesy of Red Bull.


I’ll give you an example. I live in a place just down the road from here called McGee Canyon. It’s a beautiful canyon. I was going for a trail run the other morning; it was relatively early, about 7:30 in the morning, and I see these kids walking toward me. The guy is in jeans, Vans, his hat’s cocked off to the side; he’s got a hoodie, a t-shirt. It’s got some outdoor qualities to it, but it’s got some hip graphics. Kind of unshaven. He could just as easily have been walking down the street in the Mission District. His girlfriend’s in Toms shoes with knee-high, super bright-colored stockings, board shorts, a hoodie, big sunglasses, a hat. A very, very unlikely couple to see walking down this trail at sunrise. It was kind of surprising.

Photos courtesy of Poler.

I actually stopped running and I said, “Hey, where are you guys from?” They’re from Los Angeles. What they’d done is they’d taken their iPhones and they’d decided to go for a hike up to a place and take some Instagrams of waterfalls and flowers with their phones to share with their friends.

Photo courtesy of Poler.

So, are they hikers? I mean, she’s hiking in a pair of Toms and knee-highs, which are not really hiking products. But this is a generation who don’t see why they can’t leave the trail, go to town, have lunch, and go to the skate park and skate all afternoon, and not change gear. But the outdoor industry is having a hard time reconciling that.

Photos courtesy of Poler.

How do you talk to a customer who is that different from us? There is, right now, in the industry, a huge generational gap where most of the people in the industry, culturally, simply don’t understand their audience. What we’re seeing out of that is that new brands are starting to emerge that are able to translate the surf-skater or the city-hipster culture into this interest in outdoor experience in unique ways. Brands like Poler out of Portland, or Alite in San Francisco, with Tae Kim: these guys are actually starting to create brand identities that appeal to a customer that the outdoor industry still doesn’t get… You know, the outdoor industry has always tried to say, “Come to us!” And Poler and these other guys are saying: “We make a product that’s coming to you and to your aesthetic.”

Photos courtesy of Poler.

Twilley: Is figuring out how to serve that new kind of customer part of the work you do with Mountain Lab?

McGuire: What I’ve been doing is working with companies that know they need something, but they aren’t quite sure what it is yet. Of course, I don’t necessarily have all the answers for them, but my job is to help assemble the right teams of people—to find the people who can work on and solve that problem. I rely very heavily on a vast network of people: people who are professors of ethnography and cultural anthropology, people who are designers in Sweden and have a background in a very clean aesthetic, and people who are, you know, hipster skaters into trail running who live in New York City.

How do you take those people and put them together on a team with a common problem? Here’s the designer who has the right aesthetic, something that matches the brand value, and here’s the ethnographer who can say that this is who the customer is today, and this is what the design experience will need to look like, from a marketing standpoint, to communicate something to that customer.

The “lab” part of Mountain Lab is really the assembly. What are all the things that go in the pot to make the special sauce? It’s putting those things together.

Twilley: And what’s the product at the end? A recommendation? A prototype?

McGuire: It’s a mix of things. We’ve done things as simple as assembling business plans for startup companies, so they can go out and receive their second or third level of funding, to actually creating design briefs and pricing metrics, all the way through to completed design packages presented back for line review. Our main focus is not just what the solution is now, but what the solution will be—how things are changing, and how you know what customers need—that incremental step of asking “What does this look like in phases A, B, C and D?”

Manaugh: Finally, how does the internal structure of Mountain Lab work?

McGuire: It’s a revolving door. I’m the only constant within the Mountain Lab today. I would say that there are eight to ten people who, on any given week, are part of my regular repertoire of who I go to. Some I go to more than others, but, at this point, everyone is independent.

In Steven Johnson’s book, Where Good Ideas Come From, he talks about the coffee shops of the Renaissance period. For me, a lot of what Mountain Lab is about is having that kind of network of people—I know that I want to have these eight people around the coffee table to share ideas. And, on the next project, or even the next phase of the same project, it might be that these four need to stay, but then we need fresh insight from these other four. And we keep changing it up. There are times where I’m not part of the conversation at all. I may be introducing two or three people, setting the stage for their dialogue, but then just taking what they’ve reported back out and adding it into another dialogue next year.



That’s part of what allows me to live in the Eastern Sierra. I live in the middle of nowhere, where nobody I work with lives, but I also live in a place that, in my industry, is deeply rooted with all the customers I work with. So technology allows me to move well beyond the Eastern Sierra, but my proximity to the end-user here allows me to stay really focused on being close to what they do and what they need.

I didn’t think, though, when I started the Mountain Lab, that it was going to be quite the way it’s been. I thought there would be a lot more design work being done in-house with people. The virtual nature of the teams, and the success we’ve found in that virtual collaboration, has surprised me. I’ve also been really surprised—pleasantly surprised—by the people I’ve been able to connect with. I didn’t, in my wildest dreams, ever think I was going to have some of these opportunities twenty years ago, when I first got into the outdoor industry.

I remember going to the very first Outdoor Retailer show with a close friend of mine, walking through the doors, and looking around, and feeling like a kid in a candy store. Now I have friends in those companies, and I can call up these industry legends and say, “Hey, I’m working on this new idea. What do you think?” Or, “Do you know the right person? Where would you go?” I’m so grateful for that opportunity, and for being able to keep that creative stoke alive.
 
  Getting more posts...