FeedIndex
Filter: E (wind)  view all
Ellis Barstow, the protagonist in Nick Arvin's most recent novel, is a reconstructionist—an engineer who uses forensic analysis and simulation to piece together, in minute detail, what happened at a car crash site and why.

The novel is based on Arvin's own experiences in the field of crash reconstruction: Arvin thus leads an unusual double-life as a working mechanical engineer and a successful author of literary fiction. Following an introduction to Arvin's work from writer, friend, and fellow explorer of speculative landscapes Scott Geiger, Venue sat down with Arvin on the cozy couches of the Lighthouse Writers Workshop in Denver for an afternoon of conversation and car crash animation viewing.




Flipping open his laptop, Arvin began by showing us a "greatest hits" reel drawn from his own crash reconstruction experience. Watching the short, blocky animations—a semi-truck jack-knifing across the center line, an SUV rear-ending a silver compact car, before ricocheting backwards into a telegraph pole—was surprisingly uncomfortable. As he hit play, each scene was both unspectacular and familiar—a rural two-lane highway in the rain, a suburban four-way stop surrounded by gas stations and fast-food franchises—yet, because we knew that an impact was inevitable, these everyday landscapes seemed freighted with both anticipation and tragedy.

The animations incorporated multiple viewpoints, slowing and replaying the moment(s) of impact, and occasionally overlaying an arrow, scale, or trajectory trace. This layer of scientific explanation provided a jarring contrast to the violence of the collision itself and the resulting wreckage—of lives, it was hard not to imagine, as well as the scattered vehicles.



As we went on to discuss, it is precisely that disjuncture, between the neat explanations provided by laws of physics and the random chaos of human motivation and behavior, that The Reconstructionist, takes as its territory.

Our conversation ranged from the art of car crash forensics to the limits of causality and chance, via feral pigs, Walden Pond, and the Higgs boson. The edited transcript is below.

• • •

Nicola Twilley: How do you go about building car crash reconstruction animations?

Nick Arvin: In the company where I worked, we had an engineering group and an animation group. In the engineering group, we created what we called motion data, which was a description of how the vehicle moved. We fed the motion data to the animators, and they created the imagery. The motion data was extremely detailed, describing a vehicle’s movement tenth of a second by a tenth of a second. At each of those points in time we had roll, pitch, yaw, and locations of vehicles. To generate such detailed data, we sometimes used a specialized software program⎯the one we used is called PC-Crash⎯or sometimes we just used some equations in Excel.


A screenshot from the PC-Crash demo, which boasts that the "Specs database contains vehicles sold in North America from 1972 to the present," and that "up to 32 vehicles (including cars, trucks, trailers, pedestrians, and fixed objects such as trees or barriers) can be loaded into a simulation project."

When you’re using PC-Crash, you start by entering a bunch of numbers to tell the program what a vehicle looks like: how long it is, where the wheels are relative to the length, how wide it is, where the center of gravity is, how high it is, and a bunch of other data I’m forgetting right now.

Once you’ve put in the parameters that define the vehicle, it’s almost like a video game: you can put the car on the roadway and start it going, and you put a little yaw motion in to start it spinning. You can put two vehicles in and run them into each other, and PC-Crash will simulate the collision, including the motion afterward, as they come apart and roll off to wherever they roll off to.


A screenshot of PC-Crash's "Collision Optimizer."


As the demo promises, "in PC-Crash 3D, the scene can be viewed from any angle desired."

Often you have a Point A and a Point B, and you need the animation to show how the vehicle got from one to the other. Point A might be where two vehicles have crashed into each other, called the “point of impact.” The point of impact was often fairly easy to figure out. When vehicles hit each other—especially in a head-on collision—the noses will go down and gouge into the road, and the radiator will break and release some fluid there, marking it. Then, usually, you know exactly where the vehicle ended up, which is Point B, or the “point of rest.” But connecting Points A and B was the tricky part.

Twilley: In real life, are you primarily using these kind of animations to test what you think happened, or is it more useful to generate a range of possibilities that you can then look for evidence of on the ground? In the book, your reconstructionists seem to do both, for example, going back and forth between the animation and the actual ground, generating and testing hypotheses.

Arvin: That’s right. That’s how it works in real life, too. Sometimes we would come up with a theory of what happened and how the vehicles had moved, and then we’d recreate it in an animation, as a kind of test. Generating a realistic-looking animation is very expensive, but you can create a crude version pretty easily. We’d watch the animation and say, “That just doesn’t look right.” You have a feel for how physics works; you can see when an animation just doesn’t look right. So, very often, we’d look at an animation and say to ourselves: we haven’t got this right yet.


Screenshot from a sample 3D car crash animation created by Kineticorp; visit their website for the video.

One of the challenges of the business is that when you’re creating an animation for court, every single thing in it has to have a basis that’s defensible. An animation can cost tens of thousands of dollars to generate, and if there is one detail that’s erroneous, the other side can say, “Hey, this doesn’t make sense!” Then the entire animation will be thrown out of court, and you’ve just flushed a lot of money down the toilet. So you have to be very meticulous and careful about the basis for everything in the animation.

Which is all to say that you have to look at every single mark on the vehicle and try to figure out exactly where and how it happened. In the novel there is an example of this kind of thinking when Boggs shows Ellis how, when looking at a vehicle that has rolled over, you literally examine each individual scratch mark on the vehicle, because a scratch can tell you about the orientation of the vehicle as it hit the ground, and it can also tell you where the vehicle was when the scratch was made, since asphalt makes one kind of scratch, while dirt or gravel will make a different type of scratch.

For one case I worked on, a high-speed rollover where the vehicle rolled three or four times, we printed out a big map of the accident site. It was so big we had to roll out down the hallway. It showed all of the impact points that the police had documented, and it showed all of the places where broken glass had been deposited as the vehicle rolled. We had a toy model of the car, and we sat there on the floor and rolled the toy from point to point on the map, trying to figure out which dent in the vehicle corresponded to which impact point on the ground.

I remember the vehicle rolled through a barbed wire fence, and there was a dent in one of the doors that looked like a pole of some kind had been jammed into the sheet metal. We figured it had to be one of the fence posts, but we struggled with it for weeks, because everything else in the roll motion indicated that, when the car hit the fence, the door with the dent in it would have been on the opposite side of the vehicle. We kept trying to change the roll motion to get that door to hit the fence, but it just didn’t make sense.

Finally, one of my colleagues was going back through some really poor quality police photographs. We had scarcely looked at them, because they were so blurry you could hardly see anything. But he happened to be going back through them, and he noticed a fireman with a big crowbar. And we realized the crowbar had made the dent! They had crowbarred the door open.

Which is all to say that you have to look at every single mark on the vehicle and try to figure out exactly where and how it happened.


Screenshots from sample 3D car crash animations created by Kineticorp; visit their website for the video.

Sometimes, though, even after all that meticulous attention to detail, and even if you believe you have the physics right, you end up playing with it a little, trying to get the motion to look real. There’s wiggle room in terms of, for example, where exactly does the driver begin braking relative to where tire marks were left on the road. Or, what exactly is the coefficient of friction on this particular roadway? Ultimately, you’re planning to put this in front of a jury and they have to believe it.

Twilley: So there’s occasionally a bit of an interpretive leeway between the evidence that you have and the reconstruction that you present.

Arvin: Yes. There’s a lot of science in it, but there is an art to it, as well. Pig Accident 2, the crash that Ellis is trying to recreate at the start of my book, is a good example of that.

It’s at the start of the book, but it was actually the last part that was written. I had written the book, we had sold it, and I thought I was done with it, but then the editor—Cal Morgan at Harper Perennial—sent me his comments. And he suggested that I needed to establish the characters and their dynamics more strongly, early in the book.

I wanted an accident to structure the new material around, but by this time I was no longer working as a reconstructionist, and all my best material from the job was already in the book. So I took a former colleague out for a beer and asked him to tell me about the stuff he’d been working on.

He gave me this incredible story: an accident that involved all these feral pigs that had been hit by cars and killed, lying all over the road. And then as a part of his investigation, he built this stuffed pig hide on wheels, with a little structure made out of wood and caster wheels on the bottom. They actually spray-painted the pig hide black, to make it the right color. He said it was like a Monty Python skit: he’d push it out on the road, then go hide in the bushes while the other guy took photographs. Then he’d have to run out and grab the pig whenever a car came by.



But there wasn’t any data coming out of that process that they were feeding into their analysis; it was about trying to convince a jury whether you can or can’t see a feral pig standing in the middle of the road.

Twilley: That’s an interesting analogy to the craft of writing fiction, related to the question of what is sufficient evidence for something to be believable.

Arvin: Exactly. It’s so subjective.

In that case, my friend was working for the defense, which was the State Highway Department—they were being sued for not having built a tunnel under the road for the wild pigs to go through. In the novel, it takes place in Wisconsin, but in reality it happened in Monterey, California. They’ve got a real problem with wild pigs there.

Monterey has a phenomenal number of wild pigs running around. As it turned out, the defense lost this case, and my friend said that it was because it was impossible to get a jury where half the people hadn’t run into a pig themselves, or knew somebody who had had a terrible accident with a pig. The jury already believed the pigs were a problem and the state should be doing something about it.


Screenshot from a sample 3D car crash animation created by Kineticorp; visit their website for the video.

Geoff Manaugh: In terms of the narrative that defines a particular car crash, I’m curious how reconstructionists judge when a car crash really begins and ends. You could potentially argue that you crashed because, say, some little kid throws a water balloon into the street that distracts you and, ten seconds later, you hit a telephone pole. Clearly something like a kid throwing a water balloon is not going to show up in PC-Crash.

For the purpose of the reconstructionist, then, where is the narrative boundary of a crash event? Does the car crash begin when tires cross the yellow line, or when the foot hits the brakes—or even earlier, when it started to rain, or when the driver failed to get his tires maintained?

Arvin: It’s never totally clear. That’s a grey area that we often ended up talking about and arguing about. In that roll-over crash, for example, part of the issue was that the vehicle was traveling way over the speed limit, but another issue was that the tires hadn’t been properly maintained. And when you start backing out to look at the decisions that the drivers made at different moments leading up to that collision, you can always end up backing out all the way to the point where it’s: well, if they hadn’t hit snooze on the alarm clock that morning

Twilley: Or, in your novel’s case, if they weren’t married to the wrong woman…

Arvin: [laughs] Right.

We worked on this one case where a guy’s car was hit by the train. He was a shoe salesman, if I remember right, and he was going to work on a Sunday. It just happened to be after the daylight savings time change, and he was either an hour ahead or an hour behind getting to work. The clock in the car and his watch hadn’t been reset yet.

He’d had this job for four years, and he’d been driving to work at the same time all those years, so he’d probably never seen a train coming over those tracks before—but, because he was an hour off, there was a train. So, you know, if he’d remembered to change his clocks…


Screenshots from sample 3D car crash animations created by Kineticorp; visit their website for the video.

Twilley: That reminds me of something that Boggs says in the book: “It’s a miracle there aren’t more miracles.”

Arvin: Doing that work, you really start to question, where are those limits of causality and chance? You think you’ve made a decision in your life, but there are all these moments of chance that flow into that decision. Where do you draw a line between the choices you made in your life and what’s just happened to you? What’s just happenstance?

It’s a very grey area, but the reconstructionist has to reach into the gray area and try to establish some logical sequence of causality and responsibility in a situation.

Twilley: In the novel, you show that reconstructionists have a particular set of tools and techniques with which to gain access to the facts about a past event. Other characters in the book have other methods for accessing the past: I’m thinking of the way Ellis’s father stores everything, or Heather’s photography. In the end, though it seems as though the book is ambivalent as to whether the past is accessible through any of those methods.

Arvin: I think that ambivalence is where the book is. You can get a piece of the past through memory and you can get a piece through the scientific reconstruction of things. You can go to a place now, as it is physically; you can look of a photograph of how it was; you can create a simulation of the place as it was in your computer: but those are all representations of it, and none of them are really it. They are all false, to an extent, in their own way.

The best I think you can hope to do is to use multiple methods to triangulate and get to some version of what the past was. Sometimes they just contradict each other and there’s no way to resolve them.


Screenshots from sample 3D car crash animations created by Kineticorp; visit their website for the video.

Working as a reconstructionist, I was really struck by how often people’s memories were clearly false, because they’d remember things that just physically were not possible. Newton’s laws of motion say it couldn’t have happened. In fact, we would do our best to completely set aside any witness testimony and just work from the physical evidence. It was kind of galling if there was not just enough physical evidence and you had to rely on what somebody said as a starting point.

Pedestrian accidents tended to be like that, because when a car runs into a person it doesn’t leave much physical evidence behind. When two cars run into each other, there’s all this stuff left at the point where they collided, so you can figure out where that point was. But, when a car runs into a person, there’s nothing left at that point; when you try to determine where the point of impact was, you end up relying on witness testimony.


Screenshots from a PC-Crash demo showing load loss and new "multibody pedestrian" functionality.

Twilley: In terms of reconciling memory and physical evidence—and this also relates to the idea of tweaking the reconstruction animation for the jury—the novel creates a conflict about whether it’s a good idea simply to settle for a narrative you can live with, however unreliable it might be, or to try to pin it down with science instead, even if the final result doesn’t sit right with you.

Arvin: Exactly. It sets up questions about how we define ourselves and what we do when we encounter things that conflict with our sense of identity. If something comes up out of the past that doesn’t fit with who you have defined yourself to be, what do you do with that? How much of our memories are shaped by our sense of identity versus the things we’ve actually done?

Twilley: It’s like a crash site: to what extent, once the lines have been repainted and the road resurfaced, is a place not the same place where the accident occurred, yet still the place that led to the accident? That’s what’s so interesting about the reconstructionist’s work: you’re making these narratives of crashes that define it for a legal purpose and yet the novel seems to ask whether that is really the narrative of the crash, whether the actual impact is not the dents in the car but what happens to people’s lives.

Arvin: I always felt that tension—you are looking at the physics and the equations in order to understand this very compressed moment in time, but then there are these people who passed through that moment of time, and it had a huge effect on their lives. Within the work, we were completely disregarding those people and their emotions—emotions were outside our purview. Writing the book for me was part of the process of trying to reconcile those things.


Screenshot from a sample 3D car crash animation created by Kineticorp; visit their website for the video.

Manaugh: While I was reading the book, I kept thinking about the discovery of the Higgs boson, and how, in a sense, its discovery was all a kind of crash forensics.

Arvin: You’re right. You don’t actually see the particle; you see the tracks that it’s made. I love that. It’s a reminder that we’re reconstructing things all the time in our lives.

If you look up and a window is open, and you know you didn’t open it, then you try to figure out who in the house opened it. There are all these minor events in our lives, and we constantly work to reconstruct them by looking at the evidence around us and trying to figure out what happened.

Manaugh: That reminds me of an anecdote in Robert Sullivan’s book, The Meadowlands, about the swamps of northern New Jersey. One of his interview subjects is a retired detective from the area who is super keyed into his environment—he notices everything. He explains that this attention to microscopic detail is what makes a good detective as opposed to a bad detective. So, in the case of the open window, he’ll notice it and file it away in case he needs it in a future narrative.

What he tells Sullivan is that, now that he is retired, it’s as though he’s built up this huge encyclopedia of little details with the feeling that they all were going to add up to this kind of incredible moment of narrative revelation. And then he retired. He sounds genuinely sad—he has so much information and it’s not going anywhere. The act of retiring as a police detective meant that he lost the promise of a narrative denouement.

Arvin: That’s great. I think of reconstruction in terms of the process of writing, too. Reconstruction plays into my own particular writing technique because I tend to just write a lot of fragments initially, then I start trying to find the story that connects those pieces together.

It also reminds me of one of my teachers, Frank Conroy, who used to talk about the contract between the reader and the writer. Basically, as a writer, you’ve committed to not wasting the reader’s time. He would say that the reader is like a person climbing a mountain, and the author is putting certain objects along the reader’s path that the reader has to pick up and put into their backpack; when they get to the top of the mountain there better be something to do with all these things in their backpack, or they are going to be pissed that they hauled it all the way up there.

That detective sounds like a thwarted reader. He has the ingredients for the story—but he doesn’t have the story.


Screenshots from sample 3D car crash animations created by Kineticorp; visit their website for the video.

Twilley: In the novel, you deliberately juxtapose a creative way of looking—Heather’s pinhole photography—and Ellis’s forensic, engineering perspective. It seems rare to be equipped with both ways of seeing the world. How does being an engineer play into writing, or vice versa?

Arvin: I think the two things are not really that different. They are both processes of taking a bunch of little things—in engineering, it might be pieces of steel and plastic wire, and, in writing a novel, they’re words—and putting them together in such a way that they work together and create some larger system that does something pleasing and useful, whether that larger thing is a novel or a cruise ship.

One thing that I think about quite a bit is the way that both engineering and writing require a lot of attention to ambiguity. In writing, at the sentence level, you really want to avoid unintentional ambiguity. You become very attuned to places where your writing is potentially open to multiple meanings that you were not intending.

Similarly, in engineering, you design systems that will do what you want them to do, and you don’t have room for ambiguity—you don’t want the power plant to blow up because of an ambiguous connection.

But there’s a difference at the larger level. In writing, and writing fiction in particular, you actually look for areas of ambiguity that are interesting, and you draw those out to create stories that exemplify those ambiguities—because those are the things that are interesting to think about.

Whereas, in engineering, you would never intentionally take an ambiguity about whether the cruise ship is going to sink or not and magnify that!


Screenshot from a sample 3D car crash animation created by Kineticorp; visit their website for the video.

Twilley: I wanted to switch tracks a little and talk about the geography of accidents. Have you come to understand the landscape in terms of its potential for automotive disaster?

Arvin: When you are working on a case—like that rollover—you become extremely intimate with a very small piece of land. We would study the accident site and survey it and build up a very detailed map of exactly how the land is shaped in that particular spot. You spend a lot of time looking at these minute details, and you become very familiar with exactly how lands rolls off and where the trees are, and where the fence posts are and what type of asphalt that county uses, because different kinds of asphalt have different friction effects.

Twilley: The crash site becomes your Walden Pond.

Arvin: It does, in a way. I came to feel that, as a reconstructionist, you develop a really intimate relationship with the roadway itself, which is a place where we spend so much time, yet we don’t really look at it. That was something I wanted to bring out in the book—some description of what that place is, that place along the road itself.

You know, we think of the road as this conveyance that gets us from point A to point B, but it’s actually a place in and of itself and there are interesting things about it. I wanted to look at that in the book. I wanted to look at the actual road and the things that are right along the road, this landscape that we usually blur right past.

The other thing your question makes me think about is this gigantic vehicle storage yard I describe in the novel, where all the crashed vehicles that are in litigation are kept. It’s like a museum of accidents—there are racks three vehicles high, and these big forklift trucks that pick the vehicles up off the racks and put them on the ground so you can examine them.


A vehicle scrapyard photographed by Wikipedia contributor Snowmanradio.

Manaugh: Building on that, if you have a geography of crashes and a museum of crashes, is there a crash taxonomy? In the same way that you get a category five hurricane or a 4.0 earthquake, is there, perhaps, a crash severity scale? And if so, then you can imagine at one end of it, the super-crash—the crash that maybe happens once every generation—

Arvin: The unicorn crash!

Manaugh: Exactly—Nicky and I were talking about the idea of a “black swan” crash on the way over here. Do you think in terms of categories or degrees of severity, or is every crash unique?

Arvin: I haven’t come across a taxonomy like that, although it’s a great idea. The way you categorize crashes is single vehicle, multiple vehicle, pedestrian, cyclist, and so on. They also get categorized as rollover collision, collision that leads to a rollover, and so on. So there are categories like that, and they immediately point you to certain kinds of analysis. The way you analyze a rollover is quite a bit different from how you analyze an impact. But there’s no categorization that I am aware of for severity.

I only did it for three years, so I’m not a grizzled reconstructionist veteran, but even in three years you see enough of them that you start to get a little jaded. You get an accident that was at 20 miles an hour, and you think, that’s not such a big deal. An accident in which two vehicles, each going 60 miles an hour, crash head-on at a closing speed of 120 miles an hour—now, that’s a collision!


Screenshot from a sample 3D car crash animation created by Kineticorp; visit their website for the video.

You become a little bit of an accident snob, and resisting that was something that I struggled with. Each accident is important to the people who were in it. And, there was a dark humor that tended to creep in, and that worried me, too. On the one hand, it helps keep you sane, but on the other hand, it feels very disrespectful.

Twilley: Have you been in a car accident yourself?

Arvin: I had one, luckily very minor, accident while I was working as reconstructionist—around the time that I was starting to work on this book. I heard the collision begin before I saw it, and what I really remember is that first sound of metal on metal.

Immediately, I felt a lurch of horror, because I wasn’t sure what was happening yet, but I knew it could be terrible. You are just driving down the road and, all of a sudden, your life is going to be altered, but you don’t know how yet. It’s a scary place—a scary moment.



Twilley: Before we wrap up, I want to talk about some of your other work, too. An earlier novel, Articles of War, was chosen for “One Book, One Denver.” I’d love to hear about the experience of having a whole city read your book: did that level of public appropriation reshape the book for you?

Arvin: That’s an interesting question. There were some great programs: they had a professional reader reading portions of it, and there was a guy who put part of it to music, so it was reinterpreted in a variety of ways. That was really, really fun for me. It brought out facets of the book that I hadn’t been fully aware of.

The whole thing gave me an opportunity to meet a lot of people around the city who had read the book. I did a radio interview with high school students who had read the book—this was when we were deeper into the Iraq war and there were a lot of parallels being drawn with that war. And these were kids who were potentially going off to that war, so that was very much on their mind.

You had this concentrated group of people looking at the book and reading it and talking about it, and everybody’s got their own way of receiving it. It helped me see how, once a book is out there, it isn’t mine anymore. Every reader makes it their own.

Manaugh: Finally, I’m interested in simply how someone becomes a reconstructionist. It’s not a job that most people have even heard of!

Arvin: True. For me, it was a haphazard path. Remember how we talked earlier about that gray area between the choices you made in your life and what’s just happened to you?

I have degrees in mechanical engineering from Michigan and Stanford. When I finished my Masters at Stanford, I went to work for Ford. I worked there for about three years. Then I was accepted into Iowa Writer’s Workshop, so I quit Ford to go to Iowa. I got my MFA, and then I was given a grant to go write for a year. My brother had moved to Denver a year earlier, and it seemed like a cool town so I moved here. Then my grant money ran out, and I had to find a job.

I began looking for something in the automotive industry in Denver, and there isn’t much. But I had known a couple people at Ford who ended up working in forensics, so I started sending my resume to automobile forensics firms. It happened that the guy who got my resume was a big reader, and I had recently published my first book. He was impressed by that, so he brought me in for an interview.

In that business, you write a lot of reports and he thought I might be helpful with that.


Screenshots from sample 3D car crash animation created by Kineticorp; visit their website for the video.

Twilley: Do you still work as an engineer, and, if so, what kinds of projects are you involved with?

Arvin: I work on power plants and oil and gas facilities. Right now, I am working on both a power plant and an oil facility in North Dakota—there’s lots of stuff going on out there as part of the Bakken play. It’s very different from the forensics.

Twilley: Do you take an engineering job, then quit and take some time to write and then go back into the engineering again? Or do you somehow find a way to do both?

Arvin: I do both. I work part time. Part-time work isn’t really easy to find as an engineer, but I’ve been lucky, and my employers have been great.

Engineers who write novels are pretty scarce. There are a few literary writers who started out in engineering but have gotten out of it—Stewart O’Nan is one, George Saunders is another. There’s Karl Iagnemma, who teaches at MIT. There are a few others, especially in the sci-fi universe.

I feel as though I have access to material—to a cast of characters and a way of thinking—that’s not available to very many writers. But the engineering work I’m doing now doesn’t have quite the same dramatic, obvious story potential that forensic engineering does. I remember when I first started working in forensics, on day one, I thought, this is a novel right here.
The largest collection of wild yeasts in the world fits inside a single beige chest freezer, humming quietly at the back of a busy lab in the University of California at Davis's shiny new Robert Mondavi Institute for Wine and Food Science.



The Phaff Yeast Culture Collection, as it's known, consists of more than 7,000 strains of 750 different species of the single-celled fungi, mixed with glycerine in cryogenically stored vials or freeze-dried into pellets. Roughly 80 percent of them are not held by any other yeast library in the world.



Kyria Boundy-Mills
, the Phaff Collection curator, knows this because last year she surveyed her global yeast-collecting colleagues, then published her findings in the Journal of Industrial Microbiology and Biotechnology. Her own yeast empire is one of several such microbial archives around the world, ranging from broad national "type" libraries to niche collections specializing in microbes from reefs, breweries, and even Antarctic explorers' huts.

As Boundy-Mills showed Venue around her office and lab, she explained that the Phaff Collection's main focus is yeasts isolated from environmental habitats: gathered from sewage sludge, vanished cacti forests, cockroaches, hot springs, glaciers, human cerebrospinal fluid, and a mare's uterus.



The oldest yeast in the collection was isolated by the UC Berkeley cellarmaster in 1893. When Venue visited, Boundy-Mills was still busy processing the 150 new species of yeast she brought back from a 2011 National Institutes of Health-funded biodiversity survey expedition in Indonesia.

"Nearly half of them are new to science," she told us, which makes them a lot of work. "That’s lifetime’s worth of work there, just to describe 60 new species."

The expedition, which included entomologists, botanists, and ichythologists, cataloged such an immense richness of biodiversity that, Mills told Venue, their research site has now been proposed as a national park. "If it's passed," she said, "it will be the first national park in Indonesia to be declared based on biodiversity data—and one of the first in the world based specifically on biodiversity."

The unspoken implication here—that there could even someday be a yeast-based national park—raises the fascinating subject of scale when discussing the types of landscapes or habitats we consider worthy of preservation. Could a single, microbiologically rich room or building be biologically important enough to be declared a national park?

In any case, while other colleagues focused on collecting and identifying microbes and plants with therapeutic potential, Boundy-Mills' focus was on possible bioenergy applications. Specifically, this meant looking for new enzymes that can break down plant materials to simpler sugars, as well as new yeast varieties that can eat sugar and turn it into oil. As Boundy-Mills explained:

Most yeasts will stop eating when they’re no longer hungry. But there are a few yeast species that keep eating the sugar—and eating it and eating it—and they convert it to oil and store it. Under the microscope, you see these big, huge oil droplets inside the cells. They can be up to 60 percent oil—they’re like these obese, couch-potato yeasts.

To find enzymes that can break down plant material, Boundy-Mills and her team sampled the gut microbes of wood-feeding beetle larvae, as well as the decaying wood around them. Meanwhile, a lot of the high-oil yeasts that Boundy-Mills brought back were isolated from the surface of leaves, with some coming from the soil.


Dissected Buprestid beetle larvae, photograph by Irnayuli Sitepu (UC Davis; Ministry of Forestry, Indonesia).

Yeast cells, at only a couple of microns in length, are frequently more of a challenge to isolate for collection than plants or fish. In some cases, Boundy-Mills would just take a sterile bag, put it around a leaf, pluck it off, and pour in some sterile saline solution. After it had swished around for a while, she would put that liquid on an agar plate to culture any microbes that had been on the leaf's surface. Meanwhile, she told us with evident glee, a lot of the high-oil yeasts form ballistospores, meaning that they shoot out their spores, firing them several millimeters into the air:

This is kind of cool. For them, we smeared some Vaseline inside the lid of the Petri plate, and we stuck some pieces of leaf in the lid. If the yeast can make these ballistospores, they will shoot those down onto the agar surface and grow there. It’s called the ballistospore capture method.

Now that she has these Indonesian couch-potato yeasts back in the lab (after mountains of import and and export paperwork, and a lengthy process of purification and DNA analysis), Boundy-Mills is not only observing their oil production performance, but also studying the other by-products that could possibly come out of the yeast cell, in order to make it an economically viable biofuel production process.

As well as oils, some of her yeasts produce protein, anti-oxidants, and even flavoring ingredients. Elsewhere in the collection are yeasts that show promise in agricultural pest control or are used in food processing.

One strain, Phaffia rhodozyma, was originally isolated on a tree stump in Japan, and is now used industrially to produce a dietary supplement for farmed salmon and shrimp, to make them pinker.



In addition to her own research and the occasional yeast-hunting expedition, Boundy-Mills spends her time preparing and sending out strains to researchers who request them, and maintaining the collection—no small task, as the yeasts are far from immortal, even in the extreme cold, so each strain has to be re-cultured on agar in Petri dishes every five years.


Kyria Boundy-Mills with Herman Phaff's notebooks. Phaff, who founded the collection, focused on the ecology of yeast, recording copious contextual notes on their functionality in nature, their interaction with decaying plant material, and the insects that live alongside them.


The Yeasts: A Taxonomic Study has expanded from one volume (center) to three (left) over the past decade.

Boundy-Mills also acts as a kind of yeast consultant, screening and identifying yeasts for biotech companies. As we prepared to leave, she showed us her yeast bible: a taxonomic catalog of all known yeasts. To help us understand why she finds the field so exciting, she explained:

In 2001, when Hermann Phaff, who founded this collection, died, the Taxonomic Study was just one volume, with about six or seven hundred species. In 2011, they had to split it into three volumes, to accommodate more than 1,400 species. And there’s another couple of hundred yeast species that have come out since that was published.

Incredibly, while the known universe of yeasts is increasing exponentially, thanks primarily to DNA sequencing technology, it's estimated that less than one percent of the world's yeast species have been discovered.

"It's one of the most under-surveyed fields—microbes in general," Boundy-Mills sighed. "There are no yeasts that are on the endangered species list because we wouldn't even know if they were at risk. We’re spending all this time and effort exploring the extraterrestrial world, which is great. But we need to spend more time and effort exploring the terrestrial world, too. There’s so much on this planet that we just have not discovered yet!"


On a brief detour on our way to visit Carlsbad, New Mexico, Venue swung through the northwest extremity of Texas, within shooting distance of the 10,000 Year Clock of the Long Now Foundation and through the looming mountainous remains of an ancient coral reef.

What was once a seabed is now desert, lifted far above the distant Gulf and criss-crossed with exploratory hiking paths.



The Guadalupe Mountains, subject to federal land preservation as the Guadalupe Mountains National Park since 1972, tower over the arid valley that first welcomed us on the drive.

"From the highway," National Geographic writes, "the mountains resemble a nearly monolithic wall through the desert." Indeed, the huge and looming landforms to our north—a landscape made from billions of dead marine organisms, compressed and laminated over millions of years into geology—seemed to hold back, for the entirety of our hike, an ominous weather front that was all but pinned there in the sky like a dark butterfly threatening a rainstorm that never arrived, unable to cross over the jagged hills.



"But drive into one of the park entrances," the magazine continues, "take even a short stroll, and surprises crop up: dramatically contoured canyons, shady glades surrounded by desert scrub, a profusion of wildlife and birds." That's exactly what we did, on a short diversion from our drive into Carlsbad.

Humans have been living in the area for at least 12,000 years, often leaving behind pictographs. They had settled what is, in reality, an ancient shoreline, an ocean coast produced tens of millions of years ago, primarily during the late Cretaceous. Indeed, the region has passed through several instances of flooding, including a Pleistocene-era salt lake 1.8 million years ago that left behind the El Paso dune field, salt flats that actually led to a brief war in the 1870s.



In any case, as can be seen in the maps of geologist Ron Blakey, who Venue interviewed at his home in Flagstaff, Arizona, about the challenge of visually representing the large-scale terrestrial changes that produced landscapes such as the Guadalupe Mountains, the region was one maritime, more like the Bahamas or Indonesia than the dry uplands of the U.S. southwest.

Map of North America during the Cretaceous-Tertiary by Ron Blakey.

At that point, warm and shallow seas extended deep into what is now northwest Texas, leaving behind uncountable billions of sea creatures whose remains later became soft limestone. This limestone, easily eroded and well-known for its propensity to form mammoth caves, is also the reason why this region is riddled from within with truly huge caverns—including Carlsbad Caverns, located at the northeastern edge of the same mountain range that forms the Guadalupes.

The possibility that equally massive, as yet undiscovered caverns might extend deep beneath the monumental cliffs and ridges we hiked along was something that lurked in the back of our minds as walked along.

In the end, our hike was uneventful but visually expansive, more a quick way to stretch our legs during a long road-trip, and an excuse to talk about lost oceans and inland seas before we headed underground into Carlsbad Caverns a few days later, than an extended visit to this truly huge National Park. But, luckily, the park will still be there when we return to Texas someday with more time our hands

Lead image courtesy of the U.S. National Park Service
Upon first reading about it, Thomas Jefferson's house at Monticello–a structure he himself designed and that he filled with strange devices, such as a room-sized clock that partially disappears through the floor, and a collection of paleontological artifacts, including mastodon bones—sounds like something straight out of a science fiction novel.


Amidst this symmetrical house of complex moving walls and shelves, hidden servants' passages, and meteorological equipment, the early days of a nation destined to become the United States were given a speculative, scientific air, where the European Enlightenment met the giant, extinct species of the New World, and an unmapped landscape creased with unearthly rivers meandering always further outward through endless plains and distant mountains.

Described that way, Monticello sounds not unlike "Solomon’s House," a fabulous scientific research facility featured in Sir Francis Bacon’s 17th-century utopian science fiction tale, The New Atlantis.


The Invisible College or the House of Solomon, Teophilus Schweighardt,1618, via.

Solomon’s House, we read, is a kind of super-observatory, a temple of science inside of which natural philosophers manage vast, artificial landscapes and operate complex machines, in spatial scenarios that rival anything we might read about today in Dubai or China.

Bacon offers a lengthy inventory of the devices available for use there: "We have... great and spacious houses where we imitate and demonstrate meteors... We have also sound-houses, where we practice and demonstrate all sounds, and their generation... We have also engine-houses, where are prepared engines and instruments for all sorts of motions... We have also a mathematical house, where are represented all instruments, as well of geometry as astronomy, exquisitely made..."

Thus, hoping to encounter a kind of Solomon's House of the early Americas, built by a U.S. President, its walls filled with mysterious devices and its rooms lined with old bones and fossils, with maps of unknown frontier lands greeting every visitor in the entrance hall, Venue went out of its way to visit Monticello, on the edge of Charlottesville, Virginia.



Alas, in reality, Jefferson's house is interesting, but by no means the steampunk-like fantasy of para-scientific insights, moving walls, and secret passages that at least one half of Venue was giddily—naively?—anticipating.

As it was, Venue arrived in a foggy downpour after a long drive across the state, arriving just in time for the final tour of the day, on which we were the only people.


The start of Jefferson's 7-Day Clock, in the entrance hall of Monticello. Photo courtesy Thomas Jefferson Foundation.


The clock continues through the floor.


This wind direction indicator is connected to a weathervane on the roof.


A revolving service door. Photo courtesy Thomas Jefferson Foundation.

Of course, Monticello does, indeed, have the famous clock that stretches down from the foyer all the way into the cellar, where the passage of time is marked by painted lines on the structure of the house itself; and there is the garden outside with its mysterious lost roads.

But there is also the mundane reality of a house stocked with old furniture and fancy porcelain, and the understated historical fact that it's, in fact, deeply misleading to refer to anything here as a servant's passage, when it is now so widely known as to be satirized in pop culture that Thomas Jefferson was a slave-owner and the people walking around through hidden doors and tight corridors from room to room, remaining out of sight whenever possible, weren't employees but human possessions.



The lower jawbone of a mastodon, displayed at Monticello. Photo courtesy Thomas Jefferson Foundation.

In the end, there were the old bones, maps, and artifacts from the expedition of Lewis & Clark; but we did not spend nearly as much time there as we thought we might, and instead continued, while the rain continued to fall, on our way north to Washington D.C.


Inspired by our conversation with Penelope Boston, in which she described to Venue the possibility of extraordinarily ancient lava tubes on Mars (and even the Moon), we decided to visit an earthly example ourselves.



As we looped through Arizona, from the virtual fences of Las Cruces to the lunar training ground of Cinder Lake, we detoured to explore a mile-long lava tube cave in the Coconino National Forest, just outside Flagstaff.

The Lava River Cave, as it's known, was formed roughly 700,000 years ago, when the top and sides of a stream of molten lava cooled while the interior continued to flow, hollowing out the smooth-walled, arched tunnel that still exists today.

The cave is accessible, although not easily: it's on public land and it is well-signposted, but it requires driving on unpaved roads for 15 or 20 minutes through a pine forest, at least part of which appears to be common grazing land, as we drove through a herd of slowly meandering cattle at one point, bovinely eyeing our vehicle as we rolled past, taking photos of them.

Another family were already scrambling out as we began our descent, in a light rain, into the lava tube. We negotiated the basaltic boulders and low, condensation-covered ceiling at the entrance.



Sadly, after just a few minutes spent admiring the extraordinary darkness when we switched off our flashlights, one of us slipped, hit her head, and bruised her tailbone, thus fully living up to Penelope Boston's stereotype of bumbling urban journalists, and handily demonstrating just one of the challenges future Martian explorers might face working and living in subsurface environments.


Photograph of the cave's Y-intersection, where two tubes combine into one, by Flickr user Alan Grosse.

Chastened, we retraced our steps, missing the cave's reportedly spectacular flow ripples (left behind by the last trickles of molten rock), its cooling cracks and unusual Y-shaped split, and we continued on to the roads, motels, farms, mines, landfills, and archives of Venue's onward travels.
While passing through Wisconsin, Venue made sure to hike part of the Ice Age National Scenic Trail. The trail both marks and follows the outer edge of the huge glacier that once covered nearly all of what is now the U.S. Midwest and Northeast: a wall of ice that squashed and deformed the ground below, from the Plains to Long Island. This lost, near-permanent winter left deep traces, at all spatial scales, still visible in the existing landscape today.



The Trail, as described by its National Park Service curators, is "a thousand-mile footpath—entirely within Wisconsin—that highlights these Ice Age landscape features while providing access to some of the state's most beautiful natural areas."

It stretches from the waters of Lake Michigan (itself a glacial feature) in coastal Door County down nearly to Illinois, then back up again, circumventing the hauntingly named "Driftless Area," before cresting mid-state, where it cuts an abrupt and jagged westerly line all the way to the border with Minnesota.



The small section Venue was able to visit—just one tiny sliver of the thousand-mile trail, with literally hundreds of trailheads scattered throughout the state—was the Baraboo Hills Chapter at Devil's Lake State Park. It is roughly one hour east-northeast from the state capitol in Madison.

The park is part of what is known as a "National Scientific Reserve," set aside not for preservation, but for its taxonomic value in cataloging the various edge-conditions of a now-vanished glacier.



It is an often surreal landscape, with sudden hills, standing stones, and deeply crevassed cliffs coming out of the ground for no apparent geologic reason. There are eskers and drift plains, chimneys and outwash aprons, erratics and bluffs.


From Geology of Ice Age National Scientific Reserve of Wisconsin, NPS Scientific Monograph No. 2 by Robert F. Black

For good or for bad, we arrived on a cloudy, quite humid day, and we were by no means alone. The park was full of families and other hikers, including a few small groups of rock climbers who had come out to scale the pinnacles of hills that sprayed upward with finger-like columns of lichen-covered stone.



This was the very edge of the glacier, a limit point where one landscape condition—and one very different climate—hit another.



While it offered a nice-enough hike—Wisconsin is an extraordinarily beautiful state, but its vistas suffer from comparison to the National Parks further west—the trail was far more interesting from the point of view of its curatorial intentions, rather than, say, its athletic possibilities or even its perfectly charming views.



In other words, it's the idea of assembling the outer edge of a lost landscape—an entire lost glacial era—into a contemporary narrative trail way that is so compelling. The Ice Age Trail, like other super-trails in the U.S, such as the Appalachian or the Pacific Crest, could conceivably be hiked over the course of weeks, but it comes with the explicit notion that hikers would thus experientially familiarize themselves with the topography of the Ice Age.


From "The Pleistocene of Wisconsin" by Robert F. Black, Geology of Ice Age National Scientific Reserve of Wisconsin, NPS Scientific Monograph No. 2

The terrain itself becomes an exhibition you wander through, an outdoor museum of moraines, drumlins, lakes, forests, and hills. Some of the lone rocks are totemic or pagoda-like, overlooking the thickets and small ponds below like earthen sentinels.

From Geology of Ice Age National Scientific Reserve of Wisconsin, NPS Scientific Monograph No. 2 by Robert F. Black

The Ice Age Trail Alliance hosts hiking maps on their website, including information for local landowners who might be interested in allowing access to their property in order to host part of the still-expanding networks of trails.


Geoff Manaugh and Folkert Gorter at Superfamous HQ.

At the risk of seeming recursive, Venue stopped by Superfamous, the Los Angeles-based design studio behind our own graphic identity and website, to discuss the architecture of the Internet and the process of exploring and expanding its potential with Dutch interaction designer Folkert Gorter and developer Jon-Kyle Mohr.

As the co-founder of online networks and creative communities, such as Space Collective, Cargo, and but does it float, Gorter's perspective on the Internet is deeply influenced by the sixties-era counter-culture in which the early web's artist-engineers were immersed. The design projects he regularly features on but does it float—in addition to his own quite stunning photographs—often feature other-worldly landscapes, surreal geological forms, computer-generated geometries, and more, as if part of a visual quest to uncover the programming and code beneath the forms of the world, the frustratingly inaccessible HTML behind planets, continents, oceans, and skies.


Flickr gallery, Folkert Gorter.

Mohr, meanwhile, comes to programming from a lifelong background in drumming and sound art; he pointed out, after our interview, that he had more or less grown up inside a recording studio. Like Gorter's formal interest in extreme landscapes, Mohr's musical tastes veer toward patterns, mathematics, and code, finding unexpected polyrhythms through experiments with wires, electricity, and back-of-envelope calculations.

Our conversation ranged from psychedelic science fiction to scroll bars and the future of skeumorphism, all the while asking what it means to inhabit virtual space.


Space Collective, "a cross-media information and entertainment channel for post-ideological, non-partisan,
forward thinking terrestrials," was co-founded by filmmaker Rene Daalder and designer Folkert Gorter.


• • •


Folkert Gorter, Jon-Kyle Mohr, and Nicola Twilley at Superfamous HQ.

Geoff Manaugh: Folkert, we were joking on the way here about something you said in an interview once on Los Angeles, I’m Yours. Back in 1994, apparently, you had the realization that you were going to dedicate your life to the Internet.

Folkert Gorter: [laughter] I can’t believe you read that!

Manaugh: Where did that realization come from? What made you want to work in online design?

Gorter: I was at the School of Art, Media and Technology in Utrecht, one of the first schools in Europe that took the virtual, digital revolution kind of seriously—although it wasn’t a revolution yet, but its emergence. They brought in a lot of conceptual thinkers to talk about—well, it was not really the Internet back then. It was more like CD-ROMs, multiple-ending films, parallel storylines, and so on.

It was interactive thinking—where information technology meets interface design meets art and education. The more conceptually inclined people who were professors at these schools were almost psychedelic, I think. They came straight out of the sixties and seventies counterculture in California.


New posts gallery, Space Collective.

As interactive design went online, these people who I really identified with—these artist-engineers—were the ones who were asking how they could put their stuff online. And they started making art specifically for what was possible—the basic things that you could do in the rudimentary browsers at the time, like Shockwave and animated GIFs and trying to figure out how you can scroll more than the height of a browser to show more content.

I think that group of people, who first came to the Internet as artist-engineers, completely set the tone for what the web is now. For example, browser standards are totally based on what was being pushed back then, in terms of multimedia content.


Diagram showing the relationship between identifier, resource, and representation, from Architecture of the World Wide Web, Volume 1.

Nicola Twilley: Are you implying that the Internet could be quite different today, if different kinds of people had been experimenting with it at the start?

Gorter: Right. That’s what I think. Take, for example, blogging. I think blogging probably became popular simply because it became possible to scroll vertically in web pages.

Before blogging—before vertical scrolling—there was a 640-by-480 screen, and everything that didn’t fit had to go below the fold. That was a disaster, because people couldn’t scroll, which meant you had to make all sorts of new interface artifacts—“previous” and “next” buttons, page folding, and God knows what else—until people finally said, “Screw it. We need scroll bars.”

That’s why I call them artist-engineers, because they were making a medium that was able to carry what they wanted to express.

Of course, scroll bars already existed. They were carried over from all the other OS technologies like Windows, which is why they also get really high system priority—the mouse and scroll never lag because they’re driven directly by the operating system. It wasn’t that the concept of scrolling was new, but it was definitely one of the innovations that was necessary at the beginning of the web in order to push the amount of content that you could show on sites.


Scroll bar design, Chris Norström.

The scroll bar is a great device—I have always been most excited about it as my main user interface device. Way back, I started experimenting, along with a whole bunch of other people, with making scrolling interfaces. I would put up a ton of content, but you couldn’t see all of it. It was as if the browser was the viewfinder of a camera, and, instead of moving the viewfinder, you could just scroll the page.

Manaugh: Based on some of the images and quotations that you put on but does it float and Space Collective, from people like Timothy Leary and Terence McKenna, as well some of the things you’ve said in the past about wanting to see how human culture could move online, there seems to be an overlap between your interest in information technology and an almost psychedelic interest in things like the “Singularity.” I’m curious as to how those two strands weave together for you—if one led to the other.


Screengrab, Jon-Kyle Mohr.


Screengrab, Fluid simulation with Turing patterns, linked by Folkert Gorter.

Gorter: I’m really glad that you picked those things out. Those are the peaks of the landscape that I try to hang out in, pretty much. The web is a space of infinite potential, especially when I first met it, and it has not been charted. We can only go as far as our current interfaces and technologies let us go—in the same way that human language gives us a territory in which we can dwell—and it’s almost impossible to get outside of that.

I’m really excited about trying to make that space bigger—to create more land, as it were, the way the Dutch use ever more sophisticated technologies to pump out water and now we can live on the sea floor.

To bring that back to the psychedelia thing: for me, that feeling when you dive below or beyond or above language—when you’re in that zone—that is very much akin to being on the Internet. You can be somebody else. You don’t even have to be a human. You can speak using media.


Artwork by Anton van Dalen, posted to but does it float?.

Do you know the book Starmaker, by Olaf Stapledon? At one point, the narrator has evolved so far that he’s using the brains of different organisms as hosts. He’s sharing the minds of a flock of birds sitting on some mountainside, describing the amazing sensation of feeling an entire mountainside through a collective, distributed mind. He says—and I’m paraphrasing—that it was almost as though a blind race, through technology, could have invented organs of sight.

Manaugh: He was using the birds as a browser.

Gorter: Right. The Internet is a sensorium in the same way. Thinking about it as a biological, technological extension makes a lot of sense to me. What’s mainly interesting to me, at least right now, is that you don’t carry the limitations of the body with you in the virtual domain.

Twilley: So the limitations of this virtual world come from our interfaces—both the hardware and the software. Can you give some examples of things you’d like to do but can’t because of these kinds of technological limitations?

Jon-Kyle Mohr: Some of the stuff that we’re starting to explore right now is only possible because today’s browsers are capable of enabling it. Before, there were technological obstacles like latency. Latency is the bane of my existence. If you do something, you want to feel as though you’re affecting it, and not that there is a 15-millisecond lag—that there is latency. That’s what’s so great about your phone: you flick it and it responds immediately. It feels like you are actually manipulating it.

To give another example: right now, everything uses the metaphor of a page. We’ve been playing around with Z-space—that is, breaking out of the metaphor of a page and moving into three dimensions, the X, Y, and Z axes, but still within a browser. People have been playing around with how to represent three dimensions forever, but figuring out how to do that within the interaction history of the browser is particularly interesting.


Screengrab, gallery, Space Collective.


Artwork by Anton van Dalen, posted to but does it float?.

Gorter: Virtual reality has been the frontier forever, and people have thought about it as if you were walking into a big sphere or you were wearing goggles and all of that. But, to me, thinking about virtualizing ourselves is much more interesting if you think about expanding what is possible online.

True Names, by Vernor Vinge, is a really great book to read on this subject. He lays down a lot of amazing metaphors for inhabiting cyberspace.

I mention that because what we’re trying to do with a Z-space interface is reintroduce the whole notion of the peripheral. Part of it is to do with the Tumblr and Pinterest thing: all these people posting millions of images and the way that styles seem to emerge from that stream.

If we compare vertical scrolling in blogs to driving in your car in a landscape, what we want to do now is lift off and be able to see all these image feeds, for example, as geological strata. If you’re flying above the landscape at 30,000 feet, there’s stuff to see—stuff you can’t see from your car window. That’s how we want to enlarge or expand the interface.


Flickr gallery, Folkert Gorter.

What we’re talking about now is really more of an actual environment, in which everything you see informs how you see the things around it. That’s one thing we want to accomplish with this interface, so that when you’re looking at one visual, you can also see it as part of a pattern—you can see all of its connections.

Back in the early days of the Internet, these artist-engineers I was talking about pushed for browsers to be able to handle what they wanted to do. We still have that power. Whatever the W3C sets as its standards is just based on what people want. With the whole web 2.0 fiasco—let’s be honest—it’s as if people stopped really pushing new things, because everyone was just happy together, using Facebook and Twitter and pushing their shiny social buttons.

But we need to keep pushing new stuff. It’s a really delicate process, because if you push too far, then it’s going to be clunky and no one’s going to be able to use it; but, if you don’t push far enough, there’s not going to be any change and it will never catch on.


Folkert Gorter and Jon-Kyle Mohr at Superfamous HQ.

Mohr: It’s an accessibility thing. You have to make sure that you’re still innovating, but that you’re not excluding everybody from that innovation.

Gorter: Because if you’re excluding everybody, then there’s no critical mass.

Mohr: Degradation in digital design is also really interesting—it’s almost like time-travel, in a way. If you try to look at the Wired website on a browser that was last updated four years ago, it’s going to look like hieroglyphics.


Jon-Kyle Mohr working on a sound installation.

Manaugh: Jon-Kyle, you’ve done a lot of sound-related work. How does that relate to your online design?

Mohr: There’s a lot of overlap. A lot of sound design is just designing space, and directing the ear’s attention to certain things—how you use one rhythm to offset something else, for example. Then, all the looping and cloning translates to pagination and scrolling really well. It’s all math.



Gorter: I remember you saying that you credit being able to program to being a drummer.

Mohr: Totally. They’re both additive and subtractive processes. They use the same metaphors. They loop and repeat in similar ways. It’s actually kind of funny, because, ever since I started to do a lot of the programming with Cargo, it’s influenced how I perceive music now, as being much more programmatic.



Twilley: I love this idea of useful metaphors. If the browser is to be more than just a “window” and the web is to be made of more than just “pages,” where else might you go to find new metaphors that could expand what we can do online?

Mohr: Those are great questions. Skeumorphism was such a hot topic last year, and it was that exact same question, asking about the extent to which you need to be literal with your references versus the extent to which you can be more free and abstract.


Apple's skeumorphic calendar design, via.

Gorter: I think the way we get around this is that we try to not make a specific interface. Instead, we always use the content as the interface. This is how we always design. In Cargo, there’s no design, there’s just content. You click on a thumbnail, but the thumbnail is just a smaller representation of the project.

Essentially the browser is the canvas—it is the design—whereas, with a lot of web design, you see people making designs inside the browser, like a box inside a box, and then shading here, adding a bar there.

But we don’t do that. We try to disappear.

Twilley: You’ve described Cargo as not social but rather collaborative. That difference between closed and open, complete and unfinished, is really interesting. There are actually not a lot of middle spaces on the Internet that manage to straddle that division, whereas Cargo is populated by user content but still feels aesthetically coherent.

Gorter: I think, again, that’s because the design is the way the interface works, rather than being some kind of overlay.

Even if you completely disassociate your personal site from the platform, the brand is the interface. We care so much about the feel and the behavior of the interface—when you click something, something happens to bridge the waiting time between the click and the response, and the typography is always properly in proportion—that it still feels like Cargo, at the end of the day, no matter what it looks like.


Screengrab, gallery, Space Collective.

You’re in a structure, but the only things you see are content.

Twilley: Most of the time, when you enter a social network on the Internet, the structure is very visible. If you’re on Facebook, for example—

Gorter: Everything is a dull blue. [laughter]

Twilley: It seems to me that you could maybe split the Internet between broadcast and community. Those two different kinds of platforms have very different design aesthetics.


Screengrab, Cargo Collective gallery..

Gorter: I think that’s true. We are always trying to find out where we are, between those two poles.

We’re now working on something called trace-marking. It essentially started as favoriting images across the Cargo platform. It’s one of a few attempts we’ve made to go a bit more into the community direction. The thing about Cargo is that, although our community is definitely there, it’s built on people digging how we do stuff, then trusting us with their material.

We have implemented a few community things, though: you can follow people, and there’s internal commenting. We built that functionality for student networks that we’re now running with UCLA and Art Center College of Design, and a few other places.

This new trace-marking thing is a way to visually connect. If you see an image you really like, you can save it in your own space and you can create categories for how you want to save it—whether it’s for reference or simply to tell somebody that you love their image. It becomes a visual collection tool mixed with a book-marking functionality.


Tableau De L'Histoire Universelle depuis la Creation jusqu'à ce jour, 1858, posted at Bibliodyssey, posted to but does it float?.

But this is really early days. We always let the process determine the outcome. Today, Jon-Kyle made the first steps: you drag an image, a little shelf opens up, you put it there… So now we have to figure out: what’s next?

Twilley: It seems as though images are the quickest thing to get detached from their source online.

Gorter: Exactly. That’s always bothered me! Tumblr does a great job of showing the thread of reblogs, but then no one gives a fuck about who made the original image. Creating that kind of trace for images is important.

Manaugh: Our final question, just to bring it full circle, is about the process of working on the Venue website, and whether that allowed you to explore any new territory. Perhaps it did, perhaps it didn’t.

Mohr: The integration with Google Maps for Venue was really fun. I had never used their API. We’re actually starting to work on an API for Cargo, and working with Google Maps’ API for Venue really influenced how I’m approaching that.

It was also really fun to play with spatiality. Google Maps is already interesting in terms of its Z-space functionality—the way that you can zoom in and out in satellite view—and we spent a long time playing around to find a comfortable zoom level for Venue, and so on.


Screengrab, Jon-Kyle Mohr.

Gorter: It was a great project for us, I think, because we’re always looking for excuses to extend Cargo’s functionality. The only reason we make new stuff for Cargo is in response to a specific request. We never say, “Hypothetically, people would love such-and-such new feature—let’s make it!”

And, because we don’t design websites—we don’t make layouts, we just put content in—the Google Maps integration is not simply decoration. It’s actually integral to how the site works. What I really love about what we accomplished was that we put the Google Maps in there, but we imposed the Venue aesthetic over top of it.

We’ve done projects with Flash before where we work the same way. The problem with Flash is that it’s like an aquarium—all the content sits behind a thick layer of glass. You can’t touch it; you can only look at it. It’s imprisoned. What we've done is use Flash in a new kind of way, as a background environment, and then put a flat HTML layer over top of it so that you can interact with as if you were interacting with any website.

Now, if you guys do another iteration of Venue, we can imagine even more integration. Come back in 2014, and we’ll talk!

The thumbnail image used for this interview on Venue's "Explore" page was taken by Jonas Mlynek, ETH Zurich, courtesy of National Geographic.
"Gradually, America's management of its wild animals has evolved, or maybe devolved, into a surreal kind of performance art," reflects Jon Mooallem, author of Wild Ones: A Sometimes Dismaying, Weirdly Reassuring Story About Looking at People Looking at Animals in America.


Detail from the cover of Jon Mooallem's Wild Ones.

This is a surprisingly generous statement, considering that Mooallem has spent the last few years researching a harrowing litany of accidental extinctions and unintended consequences—including a surreal day spent chasing ex-convict Martha Stewart as she and her film crew pursued polar bears across the Arctic tundra—in order to untangle the complicated legal and emotional forces that shape America's relationship with wildlife.

Despite the humor, the stakes are high: half the world's nine million species are expected to be extinct by the end of this century, and, as Mooallem explains, many of those that do survive will only hang on as a result of humans' own increasingly bizarre interventions, blurring the line between conservation and domestication to the point of meaninglessness.

On a foggy morning in San Francisco, Venue met Mooallem for coffee and a conversation that ranged from tortoise kidnappings to polar bear politics. An edited transcript of our conversation follows.

• • •

The polar bear tourism industry in Churchill, Manitoba, relies on a dozen specially built vehicles called Tundra Buggies that take tourists and their cameras out to see the world's southernmost bear population. Photo: Polar Bears International.

Geoff Manaugh: In the book, you’ve chosen to focus on two very charismatic, photogenic, and popular animals: the whooping crane and the polar bear.

Jon Mooallem: They’re the celebrities of the wildlife world.

Manaugh: Exactly. But there’s a third example, in the middle section of the book, which is a butterfly. It’s not only a very obscure species in its own right, but it’s also found only in a very obscure Bay Area preserve that most people, even in Northern California, have never heard of. What was it about the story of that butterfly, in particular, that made you want to tell it?

Mooallem: I thought it would be really interesting to go from the polar bear, which is the mega-celebrity of the animal kingdom, to its complete opposite—to something no one really cared about—and to see what was at stake in a story where the general public doesn’t really care about the animal in question at all. It turned out that there was a hell of a lot at stake for the people working on that butterfly.


Lange's Metalmark butterfly (Apodemia mormo langei). Photo: U.S. Fish & Wildlife Service.

It’s called the Lange’s Metalmark butterfly, and it’s about the size of a quarter. As you said, it only lives in this one place called Antioch Dunes, which is about sixty-seven acres in total. It is surrounded by a waste-transfer station, a sewage treatment plant, and a biker bar, and there’s a gypsum factory right in the middle that makes wallboard. You can’t even walk across the preserve, actually, because of this giant industrial facility in the middle of it.

In fact, the outbuilding where Jaycee Dugard, the kidnapping victim, was held is just round the corner.


Counting butterflies at Antioch Dunes. Photo: Jon Mooallem

It’s a forgotten place. It’s not the sort of place you’d expect to spend a lot of time in if you’re writing a book about wildlife in America.

On top of all that, not only is the butterfly the animal in the book that people won’t have heard of, or that they won’t know much about, but it’s also the one that I didn’t know very much about, going in. Looking back on it, it was somewhat audacious to say in my book proposal that a third of the book was going to be the story of this butterfly, because I really knew almost nothing about it! But it ended up being by far the most fascinating story, for me. That’s at least partly because I had the sense that I was looking at things that no one had ever looked at and talking to people who no one had ever talked to before.



Jana Johnson leads a captive breeding project for the Lange's Metalmark from inside America's Teaching Zoo, where students in Moorpark College's Exotic Animal Training and Management degree program learn their trade. Photos: (top) Jason Redmond, Ventura County Star; (bottom) Louis Terrazzas, U.S. Fish & Wildlife Service.

It also seemed as though, when you’re working in an environment like that on a species that doesn’t get a lot of support or interest, you’re confronting a lot of the fundamental questions of environmentalism in a much more dramatic way. You have to work harder to sort through them, because it’s difficult to make simple assumptions about what you’re doing—that what you’re doing is worthwhile and good—when you don’t have anyone telling you that, and when it looks as hopeless as it looks with the Lange’s Metalmark.

Maybe hopeless is too strong a word—but you can’t transpose romantic ideas about wilderness and animals onto the situation, because it’s just so glaringly unromantic. You can’t stand in Antioch Dunes and take a deep breath of fresh air and feel like you’re in some primordial wilderness. You don’t have that luxury.

The other thing that was interesting about the butterfly story was the fact that it was happening on such a small scale. The butterfly’s always just lived in this one spot—it’s the only place it lives on earth—so you could look at what happened to this small patch of land over a hundred years and meet all the people who came in & out of the butterfly’s story. It was quite self-contained. It was almost like a stage for a play to happen on.


Butterflies on display in cases at the Carnegie Museum of Natural History. Photo: Venue.

Manaugh: Harry Lange, for whom the butterfly is named, has a great line that seems to sum up so much of the sadness and stupidity in the human relationship with wild animals. He said, after exterminating the very last of the Xerces Blue butterfly: “I always thought there would be more…”

Mooallem: Right—and that was the other extraordinary thing about the butterfly story.

When I started working on the book, I had no idea about the history of butterfly collectors in the Bay Area. Apparently, the Bay Area was a big hotspot for butterflies, because of the microclimates here. It can be ten or fifteen degrees hotter in the Mission District than it is at the beach; there can be fog in some places and not others; and all of this creates a sort of Galapagos Island effect. The whole peninsula is peppered with these different micro-populations of butterflies because of the different microclimates.

Meanwhile, in the early twentieth century, at a time when the Audubon Society and other groups were being founded and there was a turn against the overhunting of species, it still seemed OK and sort of benign to collect butterflies. It wasn’t considered “hunting.” You could transfer all of that ambition to conquer nature and discover new things to collecting butterflies. You’re here at the very end of North America, where the country finally runs out of room, and now you’re starting to run out of animals too, but there were still enough butterflies to collect and name after yourself.


The Xerces Blue is the first butterfly in America known to have gone extinct due to human disturbance. Photo: Andrew Warren/butterfliesofamerica.com

The story of Xerces Blue, which is the butterfly that Lange thought there would always be more of, is just incredible. Back then, past 19th Avenue, it was all sand dunes. I actually met a friend of Lange’s, named Ed Ross, who was a curator at the California Academy of Sciences; he had to be in his late eighties or early nineties.

He told me about growing up as a kid here and taking the streetcar out to 19th Avenue and just getting out with his butterfly net and walking to Ocean Beach over the dunes. Occasionally you’d see a hermit, he said.


Richmond Sand Dunes (1890s). Photo: Greg Gaar Collection, San Francisco, CA, via FoundSF.


Dunes along Sunset Boulevard, San Francisco (1938). Photo: Harrison Ryker, via David Rumsey Map Collection.

That generation of butterfly nuts who were living in San Francisco in the early twentieth century saw that habitat being erased in front of their eyes.

That backstory really helped to shape my perception of a lot of things in the book by elongating the timescale. It brought up the whole idea of shifting baselines—this gradual, generational change in our accepted norm for the environment—and all these other, deeper questions that wouldn’t have come up if I’d just followed Martha Stewart around filming polar bears, as I do in the first section of the book. It’s a very different experience to zoom out and take in the entirety of a story as I did with the Lange’s Metalmark, which is why I think I enjoyed it so much.

Nicola Twilley: It’s interesting to note that Ed Ross doesn’t actually figure in the book, and that, elsewhere, you allude to several intriguing stories in just a sentence or two—to things like the volunteers who count fish at the Bonneville Dam. Instead, you deliberately keep the focus on the bear, the butterfly, and the bird. But what about all the animals or all the stories that didn’t make it into the book? Were there any particular gems that you had to leave out or that you wish you had kept?

Mooallem: There were tons! The fish counting thing is a perfect example.


Janet the fish counter, hard at work. Photo: Jon Mooallem.

I spent a day at the Bonneville Dam, and it was completely surreal. I barely touch on it in the book, but the question of how to get fish around the dam is a really interesting design problem. There have been different structures that were built and then shown not to work, and so they’ve had to adapt them or retrofit them, and that’s ended up creating all new problems that need to have something built to solve them, and so on.

The government has actually moved an entire colony of seabirds that were eating the fish at the mouth of the river. The fish that got through the dam would get to the mouth of the Columbia River, but then the double-crested cormorants would eat them all. So the government picked up the birds and moved them to another island in the river.

I felt as though, normally, when you hear about these kinds of stories, you just scratch the surface. We’re so used to hearing endangered species stories in very two-dimensional, heroic ways, where so-and-so is saving the frog or whatever, and I just knew that it couldn’t be that easy. If it was that straightforward—if you could just go out and pull up some weeds and the butterfly would survive—it wouldn’t be very meaningful work. That was the space I really wanted to get into—the muddiness where things don’t work out the way we draw them on paper.

At the same time, I was able to mention a lot of these bizarre stories—but, as you say, almost as an aside. Each one of those things could have been a much longer, deeper story. Take, for example, the “otter-free zone,” which was this incredible saga: the government was reintroducing otters in Southern California and, because of complaints from fishermen and the oil industry, they needed to control where the otters would swim. A biologist would have to go out in a boat with binoculars to look for otters that were inside the otter-free zone and, if he saw them, he’d have to try to capture them when they were sleeping and move them. It was just a hilarious, miserable failure. I spent a lot of time reporting on that—talking to the biologist and hearing what that work was actually like to have to do—yet, in the end, I only mention it. But I know there’s a deeper story there.


Sea-otter in Morro Bay, California, just north of the former otter-free zone. Photo: Mike Baird.

In fact, there’s a section of the book where I rattle off a bunch of these examples—there’s the project to keep right whales from swimming into the path of natural gas tankers, and there’s the North Carolina wolves and their kill-switch collars, and so on. Each one of those is its own Bonneville Dam story—its own complicated saga of solutions and newer solutions to problems that the original solutions caused. You could really get lost in that stuff. I did get lost in all that stuff for a long time.

This is my first book, of course, and I feel as though that’s the joy and the luxury of a book—that you do have the time and space to get lost in those things for a little while.

Manaugh: It’s funny how many of those kinds of stories there are. I remember an example that Liam Young, an architect based in London, told me. He spent some time studying the Galapagos Islands, and he told me this incredible anecdote about hunters shooting wild goats, Sarah Palin-style, from helicopters, because the goats had been eating the same plants that the tortoises depended on.


BBC Four footage of the Galapagos Island goat killers.

But, at one point, some local fishermen were protesting that the islands’ incredibly strict eco-regulations were destroying their livelihood, so they took a bunch of tortoises hostage. What was funny, though, is that all the headlines about this mention the tortoises—but, when you read down to paragraph five or six, it also mentions that something like nineteen scientists were also being held hostage. [laughter] It was as if the human hostages weren’t even worth mentioning.

Mooallem: [laughs] Wow. That reminds me of one story I saw but never followed up on, about some fishermen in the Solomon Islands who had slaughtered several hundred dolphins because some environmental group had promised them money not to fish, but then didn’t deliver the money.

Twilley: When you invest an animal with that much symbolic power, the stakes get absurdly high.

Mooallem: Exactly—look at the polar bear. Of course, the polar bear has lost a lot of its cachet. I don’t know whether you saw the YouTube video that Obama put out to accompany his big climate speech in June, but I was surprised: there wasn’t a single polar bear image in it. It was all floods and storms and dried-up corn. Four years ago, there would have definitely been polar bears in that video.

Today, though, the polar bear is just not as potent a symbol. It’s become too political. It doesn’t really resonate with environmentalists anymore and it ticks off everyone else. What’s amazing is that it’s just a freaking bear, yet it’s become as divisive a figure as Rush Limbaugh.



From "Addressing the threat of Climate Change," a video posted on the White House YouTube channel, June 22, 2013.

Manaugh: Speaking of politics, it feels at times as if the Endangered Species Act—that specific piece of legislation—serves as the plot generator for much of your book. Its effects, both intended and surreally unanticipated, make it a central part of Wild Ones.

Mooallem: It really does generate all the action, because it institutionalizes these well-meaning sentiments, and it makes money and federal employees available to act on them. It amps up the scale of everything.

The first thing that I found really interesting is the way in which the law was passed. It was pretty poorly understood by everyone who voted on it. The Nixon administration saw it as a feel-good thing. It was signed in the doldrums between Christmas and New Year’s, almost as a gift to the nation and a kind of national New Year’s resolution rolled into one. And it was passed in 1973, as well, during both Vietnam and Watergate, so the timing was perfect for something warm and fuzzy as a distraction.

But most people never read the law and they didn’t realize that some of the more hardcore environmentalist staff-members of certain congressmen had put in provisions that were a lot more far-reaching than any of the lawmakers imagined. Nixon didn’t understand that it would protect insects, for example. It was really just seen as protecting charismatic national symbols, in completely unspecified, abstract ways.


Nixon signing the Endangered Species Act. AP photo via Politico.

In the preamble to the law itself—I don’t remember the exact quote—it says something like: “We’re going to protect species and their ecosystems from extinction as a consequence of the economic development of the nation.” Passing a law that is supposed to put a check on the development and growth of the nation—all the things government is supposed to promote—is pretty astounding.

Obviously, the law’s done a tremendous amount of good, but I also think that, because of its almost back-room origins, there is a kind of sheepishness and reluctance among a lot of conservationists to draw on it to its full extent. I don’t spend a lot of time in the book on government policy, but, to get a little wonky for a second, I do find it interesting that there’s this hesitancy to really use the Endangered Species Act as a cudgel.

Groups like Center for Biological Diversity that basically spend their time suing the government to hold it to the letter of the Endangered Species Act, are quite controversial among other environmentalists for that very reason. There’s a feeling that it is too dangerous to really unleash the full power of the law. In some ways, I completely understand that, because there is no way to work these questions out. It’s not a zero sum game.

But the Endangered Species Act is always under attack. It’s always a political talking point to be able to say: we’re spending hundreds of thousands of taxpayer dollars to study slugs or whatever.

Twilley: Then there’s the fact that it’s written so as to protect entire ecosystems, rather than just the animals themselves.

Mooallem: Exactly. To me, that’s actually the even more interesting part of this. Rudi Mattoni, the lepidopterist, pointed this out to me, and it’s why he became so disillusioned with the butterfly preservation work he was doing. The law says that it is supposed to protect endangered species and the ecosystems that they depend on. He and a lot of other people feel that the approach has been completely centered on species themselves at the expense of the larger ecosystem.

Even before the Lange’s Metalmark was listed as endangered, the Antioch Dunes ecosystem had been unraveling for decades. It was already pretty much destroyed. But, using the power of the Endangered Species Act, using the power of the federal government, and using a Fish & Wildlife Service employee whose job is just pulling weeds and keeping the plants that the butterfly needs in place, we’ve been able to maintain the butterfly there, in a place where it doesn’t really belong anymore because the landscape has changed so much.

I guess you could say that one of the weaknesses of the law—or you could say that’s actually the strength of the law, because it has protected a species from extinction even long after it should have been extinct, at least in an ecological sense. But it does bring up questions about what we are actually trying to accomplish.


Churchill's "polar bear jail," where bears that come into town are kept in one of twenty-eight cells, and held without food for up to a month so that they don't associate human settlements with a food reward. Photo: Bob and Carol Pinjarra.


At the end of its "sentence," if the Hudson Bay still hasn't frozen over, the bear is drugged and airlifted by helicopter to be released north of town, closer to where the ice first forms. Photo: Nick Miroff, via Jon Mooallem.

Manaugh: Preservation of an entire ecosystem, if you were to follow the letter of the law, would require an absolutely astonishing level of commitment. Saving the polar bear, in that sense, means that we’d have to restore the atmosphere to a certain level of carbon dioxide, and reverse Arctic melting, which might mean reforesting the Amazon or cutting our greenhouse gas emissions to virtually nothing, overnight. It’s inspiringly ambitious.

Mooallem: As I try to explain in the book, that’s basically why the polar bear became so famous, for lack of a better word. It became an icon of climate change, because in a shrewd, “gotcha” kind of way, the Center for Biological Diversity and other environmentalists chose the polar bear as their tool to try to use the Endangered Species Act to put pressure on the Bush administration to deal with climate change as a much larger problem.

Even though the environmental groups themselves admitted it was very unlikely that this would work, they were trying to make the case that the polar bear is endangered, that the thing that is endangering it is climate change, and that the government is legally compelled by the Endangered Species Act to deal with this threat to an Endangered Species. So, if you accept that the polar bear is endangered, then you have to accept the larger responsibility of dealing with climate change.

It’s a completely back-door way to try to force the government to act on climate change, but the result was that the polar bear ended up with this superstar status and popular recognition among the general public, which I found amazing.


The not-sufficiently-charismatic Kittlitz's Murrelet. Photo: Glen Tepke, National Audubon Society.

What’s also interesting is that the Center for Biological Diversity had actually tried this tactic once before, using a bird called the Kittlitz’s Murrelet, and it completely failed. There’s this thing called the “warranted but precluded” category of the Endangered Species Act, which is basically a loophole.

If a species is endangered but the Fish & Wildlife Service or another agency feels that they can’t deal with it right now, they can just say, “Yes, we agree that this species is endangered, so we’re going to put it in a waiting room called ‘warranted but precluded,’ and we’ll get to it as soon as we’re done cleaning up this other mess.” Because there are so many species that are endangered and the threats keep escalating, the government has been able to shunt species after species onto that “warranted but precluded” list.

When the Center for Biological Diversity and a few other groups tried to pressure the administration to do something about climate change by getting the Kittlitz’s Murrelet listed as an Endangered Species, the government just used the “warranted but precluded” loophole, which also meant they didn’t have to rule on climate science or make any really difficult decisions.

But the Kittlitz’s Murrelet failed to inspire any kind of public support, so there was no pressure on the administration to do anything. The environmentalists who were petitioning to get the polar bear listed as part of their strategy to deal with climate change knew that the government could very easily apply the same loophole to the bear and duck the whole issue of climate science, again.


During the public comment period preceding the polar bear's accession to Endangered Species status, Secretary of the Interior Dirk Kempthorne received half a million letters and postcards, many of which were from children. Via Jon Mooallem.

The Center for Biological Diversity realized that they needed a public relations strategy as well as a legal strategy, and, by picking the polar bear, they knew that they could put the Bush administration on the spot. The Bush administration couldn’t just put the polar bear in this infinite waiting room, because people would be upset.

Kids started writing letters to the Secretary of the Interior begging him to save the polar bear. They were sending in their own hand-drawn pictures of bears, drowning.


A 2007 letter from a child to Dirk Kempthorne included this drawing of a drowning polar bear being eaten simultaneously by a shark and a lobster. Via Jon Mooallem.

In some ways, the premise of the book is that our emotions and imaginations about these animals dictates their ability to survive in the real world, and this story was a particularly fascinating—not to mention peculiar—example in which all this sentimental gushing over polar bears, which, on the face of it, seems mawkish and kind of silly, was the lynchpin in a legal proceeding. In that case, our emotions about this animal really did matter.

Of course, there’s a whole other part of the story where the administration got around it anyway. But, for a while, it mattered.

Twilley: In the book, you encounter a whole range of attitudes that people hold toward wild animals and conservation, and the journeys that they take from idealism to pragmatism to cynicism and despair. There’s William Temple Hornaday, for example, who gets ever more ambitious and optimistic, and who goes from being a taxidermist who hunted buffalo to founding the National Zoo, and then on to a project to restock the Great Plains.


Manikin for Male American Bison, Hornaday (1891), via Hanna Rose Schell; Hornaday's innovative taxidermy "Buffalo Group," originally displayed at the U.S. National Museum (now the Smithsonian), and since relocated to Fort Benton, Montana (photo: Pete and the Wonder Egg).

Then there’s Rudi Mattoni, the lepidopterist you were talking about, who starts out as a pioneer of captive breeding and reintroduction, and then gives up and moves to Buenos Aires to catalog plants and animals so that at least we will have a record of what we’ve destroyed. Through the process of visiting all these places and spending time talking with all these people, did your own attitude toward wild animals and conservation evolve or shift at all?

Mooallem: What was great about writing the book was being able to absorb all these different perspectives. I met all these different people, some of whom are incredibly jaded and some of whom are incredibly idealistic, but, when you step back, you see that, as a species, we’re all in this struggle together, and this incredibly diverse group of people are all doing their best to grab hold of some piece of it and try to solve it.

That was where the “weirdly reassuring” part of my book title came from—from looking at conservationists as a breed, rather than just an individual person. If I had just written a book about the many, many old, battle-scarred conservationists who are extremely bitter and who claim to have given up, I think I would have ended up being really depressed. I think that it’s important to remember that there are people at all different points on that spectrum of idealism and disillusionment and they all serve a purpose. I identified with all of them, and that kept me from identifying too strongly with any one of them.


William Temple Hornaday's table of wild animal intelligence. Via Jon Mooallem.

I wasn’t trying to advocate any particular position or solve any problems with this book. I actually didn’t realize this till the end, but what I was really doing was just trying to figure out how you’re supposed to feel about all this. How should you feel and respond when you look at everything that’s going on with the environment? What I tried to do is collect the attitudes and emotions of the people that I met and than to take what was useful.

I would get off the phone, for instance, with someone like Mattoni and he would be so horribly pessimistic about everything, yet somehow I would feel slightly exhilarated by it. Here’s someone who is so close to these questions—really big questions about what the place of humans on earth should be—and he’s just totally beaten down by them. But he’s in contact with them. He’s living in engagement with those kinds of questions, and there was something beautiful about that. It doesn’t necessarily make me hopeful, but it does make me feel reassured in some way.

People who haven’t read the book keep asking me, “What’s so weirdly reassuring about it?” And I don’t really know how to explain it. In the book, I just try to recreate the experience that I went through, so that, hopefully, when people get to the end of the book they can have gone through the same range of emotions, so that they also feel weirdly reassured.

Manaugh: As far as the human attitude to wildness goes, I think the role of the child is a fascinating subplot. The idea of the wild, feral child is both fascinating and terrifying in popular culture—I’m thinking of Werner Herzog’s newly restored movie about Kasper Hauser, for example, or about recent newspaper articles in the UK expressing fear about "feral children” starting riots in the streets. It seems like humans want to make children as domesticated as possible, as fast as possible, and that, in a sense, the role of education and acculturation is exactly the task of de-wilding human animals.

Mooallem: I don’t know: among certain people in America right now, it seems as though it’s almost going the other way, that there’s a kind of romanticization of kids as a noble, unspoiled embodiment of nature. We haven’t ruined them yet. That sentiment seems to be actually in opposition to this idea that anything that’s animal-like about a kid is not human.

What was interesting to me is that we surround our kids with all these animal images and stuffed lions and bears and so on, yet no one’s ever really looked at how children conceive of wild animals. We have a lot of research about how a kid might think about their family’s pet dog, for instance, but how does that kid think about a panda bear that they’ll never see?


Rufus, the polar bear rocking horse, by Maclaren Nursery.

There was one set of studies done in the 1970s that interviewed a lot of grade school kids about how they thought about wildlife, and the answers were pretty much exactly the opposite of what we like to imagine. The older kids get, the more compassionate they feel toward the wild animals. The younger kids were just horrified and scared and felt very threatened by the animals—which makes perfect sense, of course, because they’re helpless little kids.

In many ways, that’s actually the more “wild” response: the kids are behaving like animals, in the sense that they’re only looking out for their own interests.

I thought that was really funny, in fact, because the whole book came out of a very genuine feeling that it’s really sad that my daughter is going to grow up in a world without polar bears, and, at the same time, a complete inability to understand why that should be so or to rationalize that feeling. After all, she doesn’t interact with polar bears now. Why should she care about polar bears? I think part of that originally inexplicable sense of sadness comes from a romantic place where we want to see children and wild animals as part of the same culture—a culture that’s not us.

Manaugh: What’s interesting, I suppose, with the children, is that we want a kind of animal-like, wild innocence, but only until they reach a certain age.

Mooallem: That actually mirrors this cycle that I write about with a lot of wildlife where we love wild animals when they are helpless and they don’t threaten us, but then we vilify them when they inconvenience us or aren’t under our control.

My daughter is about to turn five, and I’m really glad she doesn’t bite me any more when she gets angry! At the same time, it fills me with a very profound joy when I see her stalking a butterfly on Bernal Hill, because somehow I want her to be connected to that more pure idea of nature. I think that we love wildness and we love that kind of animal nature when it doesn’t inconvenience us—when it’s not biting us in the leg.


California Department of Fish and Wildlife shot three tranquilizer darts into this celebrity mountain lion, found in a Glendale-area backyard, before removing it to Angeles National Forest. Photo: NBC4.

There’s this study in Los Angeles that showed that when there were almost no mountain lions left, people would celebrate them as a part of their natural heritage—the good wild—but then, when mountain lion populations made a bit of a comeback and the lions started intruding into the city and eating pet dogs, people’s attitudes changed and mountain lions were seen as vicious murderers—the bad wild. There is a kind of fickleness: we want it both ways.

In the book, I quote Holly Doremus, who is a brilliant legal scholar based here in Berkeley, who says that we’ve never really decided—or maybe even asked—how much wild nature we need and how much we can accept.

Twilley: What that question brings up to me, too, is the idea of an appropriate context for wildness. One of Rudi Mattoni’s first projects was breeding the Palos Verdes blue butterfly, which was thought to be extinct after its last habitat was covered by a baseball diamond, but was then rediscovered in a field of underground fuel tanks owned by the Department of Defense. I was curious about both the idea of control and the idea of pristine nature, and how both concepts are embedded in our assumptions about wildness.

Mooallem: Right. Pigeons are wild—but they annoy us. Cockroaches are wild. We don’t romanticize or preserve the wild animals that live alongside us and invade spaces that we think of as ours—we exterminate them.

As far as control goes, we want to have our cake and eat it, too. We want something that has nothing to do with us—something that has free rein and that can surprise us and thrill us—but we only want the positive side of that equation. We don’t want the wolves eating our cattle or the sea otters getting in the way of the fishermen. That’s certainly behind some of the extreme lengths we go to in order to create the right context for the animals and to keep them within a certain area that we’ve decided is appropriate for them.

The point of the book is that we’re only going to see more and more examples like the Palos Verde blue and the Lange’s Metalmark, where the last hope for a species is in a seemingly hopeless place. There are only going to be more industrial landscapes—it’s unavoidable. Travis Longcore, who is an urban conservation scientist that I spoke with for the book, makes a really good point, which is that we have to get away from what he calls Biblical thinking—that you’re either in the Garden of Eden or the entire world is fallen. He heads the organization that’s behind a lot of the Antioch Dunes butterfly recovery, and he makes a point of trying to celebrate the wildness of places that make most of us feel queasy.

I think that’s important—I’m not suggesting that we give up on the romantic idea of the places that do seem “pristine,” but I think that we need to be a little more flexible and we need to find the joy and the beauty in those other sorts of places, too.

Twilley: You chose to start the epilogue with a story that seems emblematic: the “species in a bucket” story. What about that story summed up these complex themes you were tackling in the book?

Mooallem: The “species in a bucket” story is about a fish biologist named Phil Pister and a little species of fish called the Owens pupfish. Back in the 1960s, in the Owens Valley, Phil Pister was part of the group who had rediscovered the Owens pupfish—it had been presumed extinct, but he found it living in a desert spring.


Owens Valley pupfish. Photo: UC Davis; Phil Pister in front of the BLM Springs where the fish still flourishes today. Photo: Chris Norment.

One summer—I think it was 1964—there was a drought, and this one desert spring where the fish lived was drying up. Pister ran out there with some of his California Department of Fish & Wildlife buddies, and they moved the fish to a different part of the spring where the water was flowing a little bit better and the fish would have more oxygen.

He sent everyone home thinking it was a job well done, but then, after nightfall, he realized that it wasn’t working. Scores of fish were floating belly up. So he made a snap decision. He got some buckets from his truck, he put all the fish he could into the buckets, he carried them back to his truck, and he drove them across the desert to this other spring where he knew the water was deeper and that they’d survive.

I was drawn to that story because I heard it a few different times and, originally, to be honest, I just didn’t think it was true. It sounded like this almost Biblical, heroic story of a man alone in the desert—and it was always told to me in that way, too. People stressed how miraculous it was and how noble he was, carrying these two buckets full of fish across the desert to save the species. It was almost too perfect of a metaphor—here we are with the fate of all these species in our hands—but it also turned out to be true. I actually went down to Bishop to meet Phil, and he’s a phenomenal guy.

I thought that story should start the epilogue for two reasons. In part, I liked the story for all the same reasons that I thought it wasn’t true—there’s this timelessness to it. A lot of the book is about adding layer after layer of complexity, so the reader feels less and less certainty. It’s not a book that moves toward an answer—it’s more of a book that unravels all the answers that we thought we already knew. So there was something really refreshing and absolving to just take it back to this one man with a bucket, saving a species.

The other reason is that I thought it was a good illustration of this human compulsion to help, which is the underlying driver of so many of the stories in the book. There was something really nice about Phil’s story, in that it didn’t even strike him as that remarkable at the time. Later it did, of course, and he’s written about it, pretty eloquently. But I thought his story got at the fact that we just can’t not do this sort of thing. We can’t not try to solve a problem when it’s in front of us. I found that there’s a real dignity in that.

Even the people I met who were the harshest critics of Endangered Species preservation wanted to help—they just thought the way it was being done was ridiculous or that the politics are ridiculous.


Brooke Pennypacker in costume, with the juvenile whooping cranes. Photo: Operation Migration.


Chairs set up for "craniacs" hoping to witness an Operation Migration flyover, Gilchrist County, Florida. Photo: Jon Mooallem.

Take, for example, all these people up and down Operation Migration’s route who donate their property to let the pilots stay on their land with the whooping cranes. They’re not people that you would think of as environmentalists, but they’re really grateful for this opportunity to help—there’s no red tape, there’s no government surveyor coming in to check their land for endangered species, just a simple way to make a difference for this one species.

I also liked the idea of pairing Phil Pister’s story with Brooke Pennypacker, one of the Operation Migration pilots. For Brooke, this is not a one-night-with-a-bucket deal: he flies a little plane in a bird costume in front of whooping cranes for five months of the year, and then he migrates back with them on land. His whole life is given up to this effort, for the foreseeable future. It’s not a simple problem he’s trying to solve. I found him on a pig farm, where he’d been exiled due to bureaucratic squabbling, and he had FAA inspectors coming to check out his plane. He was just beset by complexity and he was so in touch with the potential futility of it all. He was willing to accept that maybe everything he’s doing isn’t going to make a difference.


Juvenile whooping cranes getting acquainted with the microlight, pre-migration. Photo: Doug Pellerin, via Operation Migration.

That’s the complete opposite of Phil Pister walking across the desert just thinking that all he has to do is move these fish over here and they’ll be fine. In the span of 50 years, we’ve gone from one scenario to the other. But Brooke is doing it because he feels the exact same way Phil did. Brooke told me that he got involved with Operation Migration because it was as if someone had a flat tire on the side of the road and he had a jack in his car. He saw a problem and he knew that he could pull over and help. That’s where it all starts from.

Manaugh: This is a hypothesis in the guise of a question. Most people’s experience of wildlife nowadays is in the form of roadkill or perhaps squirrels nibbling through the phone cable or raccoons in their backyard. It’s very unromantic—whereas pets seem to be getting more and more exotic and strange. There’s a boom in people owning lions or boa constrictors or incredibly rare tropical birds as pets. I’m curious what you think about the role of the pet in terms of our relationship with wild animals, and whether we are turning to increasingly exotic pets in order to replace the wildness we find missing in nature itself.

Mooallem: That’s never occurred to me, but it’s a brilliant point. I’m ashamed to say that I don’t really have a lot to say about pets. I’ve never really had a pet.

My sense is that when you have a dog, the dog is your buddy. Even though it’s a dog, you more or less relate to it as a person. I think that, in that sense, pets are sort of boring to me. But this idea that we’re trying to get our exotic thrills from a pet monkey is interesting. I’ll have to give that some thought.

The stories that interest me as a writer are ones in which people are trying to respond appropriately to something where it’s not clear what the appropriate response is. For a while, I was writing a lot about the dilemma of recycling—you’re holding this can, and you don’t know whether putting it in the recycling bin is smart or whether it just gets shipped off to China. There’s that drive to do the moral thing, but most of us are completely clueless as to what the right thing might be, because of the complexity of the issues.

Wild animals are the perfect example of that kind of situation, because they can’t really tell us what they need—they’re just this black box that our actions get fed into. For some reason, probably some deep Freudian problem, that challenge of trying to do the right thing but ultimately just banging your head against the wall to figure it out is really appealing to me. I really relate to it.

I guess that’s why I’m not really that interested in pets, either. You come to feel that you understand your pet, even if you don’t. There’s not that tension or urge to solve the problem that you get with otters or wolves or buffalo. You house-break your pet and then it’s over.

Manaugh: I wonder, though, if that’s not part of the appeal of getting an exotic animal species as a pet—the promise and the thrill of not understanding it.

Mooallem: At the same time, that’s a feeling that you’ll eventually get bored or annoyed with, and you’ll end up abandoning the pet. I just read that the government is setting up unwanted tortoise drop-offs for owners who want to abandon their pets, just like babies at fire stations. Apparently in some states—Nevada and a few others—there are dozens of desert tortoises being left by their owners by the side of the road.


Desert tortoises at a sanctuary for abandoned pet tortoises in southwest Las Vegas. Photo: Jessica Ebelhar, Las Vegas Review-Journal.

When a pet monkey goes nuts and the owner gives it up, we tend to look at it as a failure of pet ownership, but maybe they actually wanted that feeling of not understanding the animal, at least at first. It’s an interesting theory.

Twilley: Another group of people who would seem to have a very different but equally complex relationship to wild animals is hunters. That’s a whole segment of Americans who seem to be less troubled about what their relationship should be with wild animals, yet who often end up being at the forefront of conservation movements, in order to save the landscapes in which they hunt. The division is interesting—it seems philosophical, but it’s also maybe class-based?

Mooallem: It’s geographic, definitely. But you’re right: a lot of the stereotypes around hunters break down when you see all the really creative conservation projects that are supported, or even spearheaded, by people who we might normally think of as redneck hunters. The lines are just not clearly defined. You also choose your species—some people are more sympathetic to one species than they are to others.

The other point I was trying to make with the book is that conserving a species or celebrating a species is just another way to use the species. Conservationists always talk about utilitarian values and aesthetic values, but, to me, it’s all the same thing. Some of us want salmon in the Columbia River because we want to fish them, and some of us want salmon there because it’s part of America’s natural glory, or because we’ll feel guilty if they go away. But, in all of those reasons, the salmon are serving human needs.

Those different reasons really come to the surface when a species rebounds. Right now, there’s a huge fight up and down the sandhill crane flyway. They were all but extinct, yet they’ve come back to the point where they’re annoying farmers, and hunters are saying: “Fantastic! They’re back—now I can hunt them with my son again. Success!” And, of course, then there’s an outcry from the birdwatchers and the conservationists who are saying that that’s not why we brought them back. We brought them back so they could be beautiful, not so they could be shot. But these are still just two groups of people who want something out of the bird.

Manaugh: There’s another book that came out recently called Nature Wars

Mooallem: Yes, I read that.

Manaugh: The author, Jim Sterba, argues that all of our well-intentioned efforts to protect animals have actually allowed deer and beaver and Canada goose populations to explode, and now they’re bringing down our planes and causing car crashes and tearing up our golf courses and so on. He ends up, to my mind, at least, over-emphasizing the point that we need to become hunters again—that the ecosystem is out of balance precisely because it no longer features human predators.


Roadkilled deer, South Carolina. Photo: John O'Neill.

Mooallem: Preserving these species—whether it’s intentional or whether it’s an unintended consequence of habitat changes, as in the case of deer—is an ecological act, and it’s going to have repercussions that we should take responsibility for dealing with. We forget we’re ecological participants. In fact, if Sterba’s book hadn’t been written, I might be thinking about exactly the same issue now. There are so many cases where it’s the rebound or the resurgence that causes the problem, rather than the decline.

The real fallacy is the “leave no trace” attitude. There is no way you’re not leaving a trace, so it’s better simply to be conscious and thoughtful and to take responsibility for what you’re doing.

Somebody asked me the other day about the de-extinction movement, and I had the same response. I don’t know what I think about actually bringing back passenger pigeons, but I think it’s good that people are talking about being proactive and being creative rather than just trying to pretend we don’t have any power.

Of course, it also makes me nervous—as it should, given our environmental history of unintended consequences, having to find solutions for problems that were caused by our own solutions for other problems that we ourselves most likely caused in the first place.
Across the United States, natural darkness is an endangered resource. East of the Mississippi, it is already extinct; even in the West, night sky connoisseurs admit that it's quicker to find true darkness by flying to Alice Springs, Australia, than traveling to anywhere in the Lower Forty-eight.

Ever since the nation's first electric streetlight made its debut in Cleveland, on April 29, 1879, the American night has become steadily brighter. In his new book, The End of Night: Searching for Natural Darkness in an Age of Artificial Light, Paul Bogard aims to draw attention to the naturally dark night as a landscape in its own right—a separate, incredibly valuable environmental condition that we overlook and destroy at our own peril.


Poster designed by Tyler Nordgren, author of Stars Above, Earth Below: A Guide to Astronomy in the National Parks.

Venue took the opportunity to visit Bogard in his office on the campus of James Madison University, in Harrisonburg, Virginia, to learn more about nocturnal America and its dark skies—and what we have lost by dissociating the two.

Our conversation touches on the difficulty of measuring and preserving such an ephemeral quality, as well as the ecological and health consequences of endless artificial light, with speculative detours into evolutionary shifts in human vision and the possibility of preserving Las Vegas (the brightest pixel in the world in NASA photographs) as a "light pollution park."

• • •


The Bortle scale was originally published in Sky & Telescope magazine in 2001. It classifies the darkness of skies from point of view of an astronomer, ranging from 1 ("an observer's Nirvana!") to 9, in which "the only celestial objects that really provide pleasing telescopic views are the Moon, the planets, and a few of the brightest star clusters." This illustration of the scale comes via Stellarium.

Nicola Twilley: Darkness is easy to overlook, if you’ll excuse the pun. How did you go about structuring the story of such a familiar, yet intangible quality?

Paul Bogard: People think they know darkness, and that they experience darkness everyday, but they don’t, really. That’s one of the reasons I borrowed the Bortle scale for the table of contents. I think John Bortle’s point, when he created this tool for measuring the darkness of skies, was that we have no idea what darkness really is. We think night is dark—full stop, end of story. But, on the Bortle scale, cities would be a Class 9—the brightest. Most of us spend our nights in what he would call a 5 at best, or more likely a 6 or 7. We rarely, if ever, get any darker than that.

Until the coming of electric light, people experienced a darkness that Bortle would classify as 2 or 3, every night. What I tried to do in the book is to show that difference, by working my way down from places that are bright to those that are less bright, but also by talking to people who are living and working in those places.


Left: Winter constellations in a Bortle Class 4 or 5 sky. Right: The same constellation panorama in an urban, Class 8 or 9 sky. Illustrations by John Bianchi from Exploring the Night Sky by Terence Dickinson, Sky & Telescope, February 2001.

Twilley: It’s interesting that, in order to see the nuances in darkness, we need to measure and name it. It was certainly a revelation to me to read in your book that twilight has three stages—civil, nautical, and astronomical, with civil being when cars should use headlights, nautical meaning that enough stars are visible for navigational purposes, and astronomical referring to the point at which the sky is dark enough for the faintest stars to emerge. Previously, I had thought of twilight as a single condition on the light-to-dark spectrum, rather than a multiplicity.

Bogard: For sure. For me, one of the reasons why identifying different depths of darkness is so important is that we don’t recognize that we’re losing it, unless we have a name to recognize it by. It’s also a way to talk about what we might regain.

That’s also what the National Parks Service Night Sky team, who I describe in the book, is trying to do with their sky quality index. If you’re charged with preserving darkness as natural resource, unimpaired for future generations, then you need to be able to put a number on the level of darkness. You need to be able to see and measure any losses before you even know what you’re trying to protect.


A member of the Night Skies team setting up the wide-field CCD camera that the National Parks Service uses to measure light pollution, at Homestead National Monument, Nebraska.

Twilley: It’s astonishing to read the description of a Bortle Class 1, where the Milky Way is actually capable of casting shadows!

Bogard: It is. There’s a statistic that I quote, which is that eight of every ten kids born in the United States today will never experience a sky dark enough to see the Milky Way. The Milky Way becomes visible at 3 or 4 on the Bortle scale. That’s not even down to a 1. One is pretty stringent. I’ve been in some really dark places that might not have qualified as a 1, just because there was a glow of a city way off in the distance, on the horizon. You can’t have any signs of artificial light to qualify as a Bortle Class 1.

A Bortle Class 1 is so dark that it’s bright. That’s the great thing—the darker it gets, if it’s clear, the brighter the night is. That’s something we never see either, because it’s so artificially bright in all the places we live. We never see the natural light of the night sky.


New York 40º 44' 39" N 2010-10-13 LST 0:04, photo illustration by Thierry Cohen as part of the Villes Eteintes series, via The New York Times. Cohen photographs major cities at night, digitally manipulates them to remove all lights, and then inserts a starry night sky from somewhere with much less light pollution on the same latitude, to create an image that shows us what New York City or Sao Paulo would look like under the Milky Way.

Geoff Manaugh: There are a few popular urban legends about the extent to which people no longer experience true, natural darkness. One is that, even though telescopes sell really well in New York, no one has seen a star over Manhattan since 1976 or something like that. The other one, which I have to assume is also at least partially an exaggeration, is that, after the Northridge earthquake in 1994, the L.A.P.D. was flooded with worried phone calls because people were seeing all these mysterious lights in the sky—lights that turned out to be stars.

Bogard: I’ve heard that one, too—that people were seeing the Milky Way for the first time, and they didn’t know what it was.

Those stories make me think of a couple of things. While I was writing the book, I went to Florence, on the trail of Galileo, and they still have two of his four telescopes. An astronomer there had this amazing line that he told me, which was that 400 years ago, in Florence, everyone could see the stars, but only Galileo had a telescope. Now, everybody has a telescope, but nobody can see the stars.

That really speaks to that New York legend. Telescope sales continue to be good, astronomy books continue to be published, and there are sky-watching apps on your phone. People are interested in the night sky. But we can’t really see any of it.


Los Angeles 34º 06' 58" N 2012-06-15 LST 14:52, photo illustration by Thierry Cohen as part of the Villes Eteintes series, via The New York Times.

The other thing it reminds me of is a guy I met in Paris, who told me that he thinks that, for the amateur astronomer, the most important instrument is not the telescope, but the automobile, because you have to have a car to drive somewhere dark enough to see anything.

Twilley: At the start of the book, you differentiate between darkness and night. Is it just that the two are no longer synonymous, or were they ever?

Bogard: It’s a good question. They’re so obviously intertwined, but it seemed to make sense to differentiate them or to specify one or the other. Night, obviously, in many places, is no longer really dark, or at least not naturally dark. In that sense, you can’t say that night means darkness. They’re not synonymous anymore. Sometimes I think that what makes night night, what makes night special, and what I love about it, is more than darkness. It is light, whether it’s natural light, like candles, or beautiful artificial light. A lot of electric lighting is really quite beautiful now.

Artificial lighting has meant a lot of really good things, arguably. We are able to extend the day into the night, which means that we can keep working, we can pursue our hobbies, we can go out to dinner, we can entertain—we can party all night long! We can do all these things that we like to do, that night has become known for. But there are other things that we have lost through this process of nocturnalization.



Landmarks in our short history of artificial street lighting include gas lamps (these arrived in New York City in 1827, with each one having to be lit by hand), and arc-light moontowers (several cities experimented with these in the late 1800s, but Austin, Texas, is the only place to still use them today).

It’s not really my thrust in the book, but I guess what I’m saying is that, if that’s all that night is, and we have lost so many of these other qualities of night, whether it’s quiet or darkness or solitude, then I think the night that we are experiencing now is really a lessened version of what it could be.

Night has a lot of qualities beyond darkness or lack of darkness—things like nocturnal sounds and smells. Those sensory things have more to do with night, for me. I’ve always had that sense that, at night, the world reduces in size and fury and sound and we start to feel not so overrun by everything. At night, that’s how I feel—free, to pursue my writing and reading or whatever. We let go of those burdens that the day holds. Those sorts of things mean that night is much more than just darkness. Yet darkness itself has so much importance alone, too, for human health and ecological health.


This Sunforce 82156 60 LED Solar Motion Light promises "added security," "powerful detection," and "peace of mind."

Manaugh: People also assume that darkness is inherently dangerous, yet you show how the connection between light and security is often a false promise.

Bogard: Exactly. Historically, that connection is really interesting. The state really encouraged light, because officials felt as though they could control a well-lit city better. Illumination was conflated with the power of the state, going back to Louis XIV, the Sun King, who decreed that candles should be hung in the streets, to demonstrate his might by banishing dark. In the years before the French Revolution, for many Parisians, public street lighting stood for tyranny. Oil-lamp smashing was a regular thing.

Ironically, what has happened now is that we have so much light that we can no longer see. We’re blinded—sometimes literally, by the brightness and glare of our security lighting—but also metaphorically, which is to say that when we light everything up, there is really no reason to look over and notice something, and say, “Wow, that’s a weird thing.”

When everything is so brightly lit, why should we look? It’s light, so it’s safe, so we switch off. And, while no one is looking, we’ve actually made life easier for the bad guys. Some studies even show that criminals actually prefer well-lit areas. I had several policemen and security consultants tell me that criminals are as afraid of the dark as we are. They don’t want to go in the dark. The light makes them feel safe, just as it does us.


Centurion Security Lighting Kit, via.

The other thing is that, physically, so much light makes it hard for our eyes to see. We don’t adapt from bright to dark quickly, so if we look toward the light, we can’t see anything else, and then most street lighting is incredibly badly designed and actually reduces contrast.

Sure, some lighting is helpful, in terms of safety and security. But we are not safe or secure simply because of lights. We are safe and secure when we are conscious of our surroundings. Most of our security lights are a huge waste of money and energy.

It’s a difficult issue. The entire third chapter is all about safety and security. I spent a lot of time on it, because the minute you start talking about light pollution, or the importance of darkness, people’s first response is, “Yeah, but we need light for safety and security.” It touches a nerve. I would just say that we don’t need all this light for safety and security. We use way more than we need, and it isn’t making anybody any safer.


Civil Twilight Design Collective won Metropolis' Next Generation 2007 contest for their lunar-resonant streetlight system, which would brighten and dim in response to ambient lighting levels.

One thing I’d say is that our eyes are amazing organs. Given the chance to adjust to darkness, we can see quite a bit and see fairly well. I would imagine that if you got rid of wall-packs and security lights and so on, you could rely on more subtle lighting design in crosswalks, stairwells, and doorways. A couple of the lighting designers I spoke to were very excited about responsive lighting.

For example, I spoke with a woman in Boulder, Colorado, whose thing was that putting lights on poles is ridiculous, and that, instead, we should have step-lights at foot level that get triggered with a motion detector. Another guy I talked with was mapping the night geography of Paris, with the idea that you could match the lux level of street lighting to the level of activity.

Twilley: There seem to be significant disparities in the quality of different cities’ nightscapes. In the book, you engage in some comparative darkness tourism in London and Paris, and London comes across as a completely wasted opportunity, in terms of lighting.

Bogard: I thought so. I’ve noticed again and again that cities will spend all this money on making themselves pretty to draw visitors, and then they having glaring light all over the place. At night, they are as ugly as every place else.


Notre-Dame de Paris illuminated at night, by Atoma.

In Paris, the lighting is designed to make the buildings beautiful at night. In London, and really all over the United States with very few exceptions, much of the lighting is just a big light shining on a building. You can see it, sure, but it’s not really very beautiful.

Manaugh: Speaking of darkness tourism, I just noticed a book called Night Walks on the bookshelf behind you, and it reminded me of something I read about the poet Samuel Taylor Coleridge. Apparently, Coleridge would take massive walks in the middle of the night. He would show up at Wordsworth’s house at 3 a.m., and they would head out into the Lake District together, talking and walking beneath the stars. It made me wonder if there are—such as night walking—lost practices of darkness, so to speak, through which people once pursued certain experiences defined by the absence of light.

Bogard: I have always loved the experience—wherever I’ve been living—of going out walking at night, usually at around eleven-ish. Nobody is out, for the most part. You can look through windows into people’s houses, if you want to, which is sort of like an Advent calendar thing. Everything looks a little different, somehow. It’s just quieter. My dog and I go walking at night, before we go to bed.

What’s interesting is that I love being out at night, but I’m also still somebody who’s afraid of the dark. That’s why the experience that I have in the book, being in Death Valley and just walking around in this incredible darkness over a several hour period, was a really great one, because after two or three hours, your eyes seem to shift again and you can see even more. You begin to feel much more comfortable. I’d love to do that again.

Twilley: The most astonishing statistic in the book, for me, was the fact that 40 percent of Americans live in such bright environments that their eyes never transition to night vision—from the cones to rods. I can’t help but wonder if, thanks to our saturation in artificial light, we might end up losing one of our ways of seeing the world.

Bogard: I actually asked Alan Lewis, a former head of the Illuminating Engineering Society of North America, exactly that question. He said he didn’t have any proof that our physiology was changing in response to the disappearance of darkness. Of course, it hasn’t been very long. My guess is that, if we keep going down the path of more and more artificial lighting, we would eventually lose scotopic vision—that’s the technical term for low-light vision using the eye’s rod cells.

That’s one of the things about all this light—it’s been so recent. Our grandparents and our great-grandparents grew up in a time when it was just so much darker. In the book, I’ve included the map that Fabio Falchi, the Italian I meet towards the end of the book, has made of the increase of artificial night sky brightness in North America. It shows the late 1950s, the mid-1970s, 1997, and then a prediction for 2025.


The increase in artificial night sky brightness in North America, including an extrapolated prediction for light pollution levels in 2025. Maps created by P. Cinzano, F. Falchi, and C. D. Elvidge.

I remember the 1970s. It wasn’t that long ago. And it’s significantly darker on those maps then than it is now.

Manaugh: That raises the question of historic preservation and what it means to bring darkness back. I’m reminded of architect Jorge Otero-Pailos and his experimental olfactory reconstruction of Philip Johnson’s Glass House in New Canaan, Connecticut. He realized that, to recreate the original smell of the house, you not only had to recreate all the VOCs off-gassing from new paint and furniture, etc., but you also bring back the smell of tobacco and the smell of certain colognes that were ubiquitous at the time—an entire olfactory aesthetic, as it were, that has been lost in the subsequent years. I mention that because you can imagine that a true historic reconstruction of a 1950s suburb would require not only a totally different light level at night but, by today’s standards, a blinding sky full of stars.


Paris 48º 50' 55" N 2012-08-13 LST 22:15, photo illustration by Thierry Cohen as part of the Villes Eteintes series, via The New York Times.


Paris 48º 51' 46" N 2012-09-13 LST 2:16, photo illustration by Thierry Cohen as part of the Villes Eteintes series, via The New York Times.

Along those lines, I’d love to hear how the National Park Service’s Night Sky Team plans to go about actually protecting such an intangible resource as darkness, and maybe even reconstructing it to “original” levels. I’m also curious whether, in the other direction, you could maybe imagine a time where, thirty years from now, we might actually have a nostalgic “light pollution park.” People would pay admission to see how crazily well-lit our cities used to be.

Twilley: We could just wall off Las Vegas and declare it a light pollution sacrifice zone right now.


The Luxor beam in Las Vegas is equal to the light of more than forty billion candles.

Bogard: That is such a neat idea. I hope that, in thirty years, or perhaps even less, that would make some sense.

As you probably know, for Earth Hour every March, people turn off the lights on certain buildings. When I met with Fabio Falchi, he was trying to get his town, Mantua, to turn off the lights after midnight. He said that he went to the Leaning Tower of Pisa for Earth Hour, and he suddenly realized how magical it was to see these famous monuments with the lights off. He thought that if more people could see these places surrounded by darkness, it would be like a discovery, because no one has seen them like that in fifty years.

Of course, he said, even with the lights off, it’s not how it was, because there’s so much sky glow. There is so much cumulative light from the surroundings reflecting that you could probably never get back to what it was originally like.


Light domes from cities at various distances from Mt. Dellenbaugh, Grand Canyon Parashant National Monument, in 2007. NPS photo.

Twilley: In the book you mention that, even in Death Valley, one of the darkest places in North America, you can see the light dome of Las Vegas on the horizon, and the lights of flights heading into San Francisco above.

Bogard: Exactly. That’s the challenge of preserving darkness: you can’t do it on your own. The National Parks Service team, in addition to figuring out how to measure darkness in order to put a number to what we have to lose, figures that their best bet is education. Of course, the parks themselves have overhauled their own lighting, but they’re also starting to offer all kinds of night programs, whether it be focused on the sensory experience of the land at night or astronomical observation or whatever. If they can’t get the rest of us to care about darkness, they don’t stand a chance of preserving their own.

There are some positive signs. For example, Acadia National Park in Maine had its first Night Sky Festival in 2009, and now the local community of Bar Harbor has enacted a light ordinance to reduce their sky glow.


Poster designed by Tyler Nordgren.

That’s the National Park Service idea, essentially. Americans will come and learn about light pollution and darkness and all of the ecological and health reasons why darkness is important and endangered. Then we will go home and, hopefully, apply some of those lessons there.

I would imagine that lots of people west of the Mississippi might say, “It’s dark where I live.” But we have changed things so much that anywhere you go east of the Mississippi, there is no true darkness. It has all been tainted.

One guy on the Night Sky team told me that sometimes people will ask, “What are you going to do with the cities? You’ll never get the cities dark again—that’s just impossible. There are too many people and too many lights.” He said that, to a certain extent, that’s true. You’re probably not going to bring the Milky Way back over Manhattan or Chicago.

His reply, though, is that if you were able to just reduce the lighting in these major cities you would see great benefits. You could address a lot of the health issues that people in the cities, who are exposed to huge amounts of light at night, are suffering from.

The other thing is that, when you draw the lighting down in the cities, the darkness ripples out into the suburbs and the country. The reason the suburbs and the countryside are so bright is because of the cities. Plenty of suburbs and towns have awful lighting as well, of course, but they could fix that lighting or even turn it all off and their skies would still be bright, because of the nearest city.


A satellite view of Earth at night shows the prevalence of artificial lighting. NASA.

Twilley: To follow up on that, I’m curious about the question of legislation. Some cities, like Flagstaff, have lighting ordinances, of course. But one of the really interesting implications in your book is that, if you think about darkness as a common resource like water or clean air, we have environmental legislation and acceptable levels for pollution for them. Or, if you think about the health side, you could make the analogy with secondhand smoke and the ways in which we regulate that. At one point you mention the phrase “light trespass,” which implies we could treat darkness like property. Would any of these be effective models for preserving darkness?

Bogard: Realistically, I think we have to start with the places that are still dark, and preserve them, because, as with so many things, they are not making it anymore. The pressures are all headed in one direction. Any kind of forward-looking lighting plan that I’ve seen starts with a solid core of darkness and then works its way out from there.

In terms of legislation, in the UK, British astronomers are taking the approach of putting lighting standards into building code. That way, any new building has to have dark-sky-friendly lighting. Then lower lighting levels become more and more normal, and you don’t get that escalation effect I describe, where older buildings look dim next to new ones, and upgrade their lighting to match, and so on. People just get used to it.


Gas station in the middle of Nevada, photograph by James Reeves. "Gas stations," Bogard told us, "are the worst offenders by far. They are just egregiously bright."

Manaugh: Of course, there is potential for a huge backlash against that, at least in the United States. If you use even something as universally beneficial as vehicle emission limits in cars as an example, you see people railing against government intrusion all the time. I can easily see someone on cable news complaining, “They want to tell me when I can turn my lights on?”

Bogard: My hope is that part of that just takes time, and those voices will eventually fade away. I see this with my students. They’ve never really been asked to think about lighting and darkness, and they assume that this super-bright world in which we live today is just the way the world is. If you could shift that and, for example, make a college campus a place where you became sensitive to good lighting, then everybody would leave with at least a sense of what’s possible.

Roger Narboni, who designed the world’s first urban “lighting master plan” for the French city of Montpellier way back in the 1980s, told me that his dream is to have education about light and darkness beginning in kindergarten, as a core part of the curriculum.

Manaugh: There’s a certain poetry to having a conversation about dark sky reserves in the National Radio Quiet Zone. This is a landscape, after all, where, by federal decree, electromagnetic “pollution” has to be kept to a bare minimum.

Bogard: Wow, I didn’t know that. I had never heard of that.


The National Radio Quiet Zone boundaries, via the National Radio Astronomy Observatory.

Manaugh: The regulations were put in place to protect the work of the National Radio Astronomy Observatory in Green Bank. The result is a 13,000-square-mile radio quarantine zone. It’s one of the few places in the United States where the air is not completely saturated by electromagnetic emissions from cell phones and power lines and radio stations and everything else.

Twilley: What’s also interesting is that people move here for that reason—people who feel that they are sensitive to electromagnetic emissions will move here for their health.

Manaugh: So, while we were driving here, we were thinking about the idea of a luxury darkness retreat, as a well-being thing.

Bogard: I can definitely imagine that. The thing I write about in the book is the question of who will have access to darkness. It’s like so many of these other things—green space, trees, quiet, and so on. It could end up being unevenly distributed; where the only way to get real darkness is to be able afford to live in a community like Aspen or Vail or somewhere like that.

This makes me think of when I was in Phoenix. I can’t remember the name of the wealthiest suburb, but what I noticed is that when you drive up towards it, all of a sudden, it’s dark. These people are rich enough to have anything they want, and they choose to have darkness at night.

Meanwhile, kids who are growing up in cities whose families don’t have the resources to travel are never going to experience that. I wonder if it will get to the point where none of us can get there, unless you’re the one percent. Then you can afford to go someplace really dark.

Twilley: It already seems as though there are huge inequalities in our exposure to light at night. I was shocked by the statistic you quote about nearly 20 percent of African-Americans in the United States working the night shift.

Bogard: And then there’s the fact that public housing is almost always over-lit in an effort to deter crime. There’s another darkness-deprived population I hadn’t considered either, before I wrote this book, which is prisoners. There’s this former convict, Ken Lamberton, who wrote about his time in prison and the way he was forced to be in the light—he wasn’t even allowed to cover his face with a blanket at night. It’s as if being constantly illuminated was actually part of his punishment.


Hallway lighting in a supermax prison is never switched off. Photograph via.

One thing that appeals to me about light a lot is how symbolic it is. Our usage of light right now is hugely symbolic of our lack of awareness of how we use things and the way we use so much more of everything than we need. It seems to me that if we could control our light use and use light more intelligently, then it could also be symbolic of us finally getting our act together in a lot of different ways.

Mike Elizalde of Spectral Motion applies make-up to actor Ron Perlman, as Hellboy.

Many of today's most original and bizarre visions of alternative worlds and landscapes come from the workshops of Hollywood effects studios. Behind the scenes of nondescript San Fernando Valley offices and warehouse spaces (if not outside California altogether, in the many other nodes of the ever-expanding global network of cinematic effects production, from suburban London to Wellington, New Zealand), lurk the multidisciplinary teams whose job it is to create tomorrow's monsters.

Spectral Motion, the effects house responsible for some of the most technically intricate and physically stunning animatronic creatures seen in feature film today, is no exception. Based in a small strip of anonymous one-story warehouse spaces squeezed in between a freeway and rail tracks, and overshadowed by a gargantuan Home Depot, Spectral Motion has developed monsters, effects, and other mechanical grotesqueries that have since become household nightmares, if not names.

Since its founding, by Mike & Mary Elizalde in 1994, the firm has worked on such films as Hellboy & Hellboy II: The Golden Army, Looper, Attack the Block, Blade 2 & Blade: Trinity, X-Men: First Class, The Watch, and this summer's (from the perspective of at least half of Venue) highly anticipated Pacific Rim.

Venue caught up with Mike Elizalde, CEO of Spectral Motion, on a cloudy day in Glendale to talk all things monstrous and disturbing. Our conversation ranged from the fine line that separates the grotesque and the alien to the possibility of planetary-scale creatures made using tweaked geotextiles, via the price of yak hair and John Carpenter's now-legendary Antarctic thriller, The Thing.



Elizalde, a good-humored conversationalist, not only patiently answered our many questions—with a head cold, no less—but then took us on a tour through Spectral Motion's surprisingly large workshop. We saw miniature zombie heads emerging from latex molds (destined for a film project by Elizalde's own son), costumes being sewn by a technician named Claire Flewin for an upcoming attraction at Disneyland, and a bewildering variety of body parts—heads, torsos, claws, and even a very hairy rubber chest once worn by Vinnie Jones in X-Men: The Last Stand—that were either awaiting, or had already performed, their celluloid magic.



The visit ended with a screening of Spectral Motion's greatest hits, so to speak, with in-house photographer and archivist Kevin McTurk—a chance to see the company's creations in their natural habitat. We walked back out into the flat light and beige parking lots of the Valley, a landscape enlivened by our heightened sense of the combination of close observation and inspired distortion required to transform the everyday into the grotesque.

• • •



Geoff Manaugh: I’d love to start with the most basic question of all: how would you describe Spectral Motion and what the company does?

Mike Elizalde: We are principally a prosthetics, animatronics, and special effects creature studio, but we are also a multifaceted design studio. We do a lot of different kinds of work. Most recently, for example, in partnership with one of my long-time colleagues, Mark Setrakian, we built anthropomorphic bipedal hydraulic robots that engage in battle, for a reality show for Syfy. It’s called RCLRobot Combat League. It’s pretty astounding what these machines can do, including what they can do to each other.

Battling it out in Robot Combat League with two robots—"eight-feet tall, state-of-the-art humanoid robots controlled by human 'robo-jockeys,'" in the words of Syfy—designed by Mark Setrakian of Spectral Motion.

Nicola Twilley: Are the robot battles choreographed, or do you genuinely not know which robot will win?

Elizalde: Oh, no, absolutely—it’s a contest. It really is about which robot will emerge as the victorious contender.

RCL is not only one of our most recent projects, but it also shows that, here at the studio, we can do everything from a very delicate prosthetic application on an actor, to an animatronic character in a film, to something that’s completely out of our comfort zone—like building battling robots.

I always tell people that, if they come in here with a drawing of a car, we could build that car. It is a very diverse group that we work with: artists, technicians, and, of course, we use all the available or cutting-edge technologies out there in the world to realize whatever it is that we are required to make.



Manaugh: What kind of design briefs come to you? Also, when a client comes to you, typically how detailed or amorphous is their request?

Elizalde: Sometimes it is very vague. But, typically, what happens is we’re approached with a script for a project. Our job is to go through the script and create a breakdown and, ultimately, a budget based on those breakdowns. We take whatever we think we should build for that script and we make suggestions as to how each thing should look—what should move, what the design should be, and so on.

Other times, we’ll be working with a director who’s very involved and who maybe even has some technical knowledge of what we do—especially someone like Guillermo del Toro. He’s completely savvy about what we do because he used to own a creature shop of his own, so working with someone like him is much more collaborative; he comes to us with a much more clear idea of what he wants to see in his films. Lots of times, he’ll even show us an illustration he’s done. He’s the first one to say, “I'm not an artist!” But he really is. He’s quite gifted.


The creature known as Wink from Hellboy II: The Golden Army, designed by Spectral Motion, including a shot of the mechanical understructure used inside Wink's left hand.

So he’ll bring us his illustrations and say, you know, “You tell me if it’s going to be a puppet, an animatronic puppet, or a creature suit that an actor can wear.” And that’s where our knowhow comes in. That’s how it evolves.

There are also times—with the robot show, for example—where they know exactly what they need but they don’t know how to achieve it. In those cases, they come to us to do that for them.

Twilley: Can you talk us through one of the projects you’ve worked on where you had to create your vision based solely on what’s in the script, rather than more collaborative work with the director? What’s that process like?

Elizalde: Well, I’d actually say that ninety percent of our work is that way. For most of the projects we work on, we do, in fact, just get a script and the director says, “Show me what this looks like.” But we love that challenge. It’s really fun for us to get into the artistic side of developing what the appearance of something will end up looking like.

We had a lot of fun working with a director named Tommy Wirkola, for example, who directed Hansel & Gretel: Witch Hunters. He was the director of Dead Snow, a really strange Norwegian film that involved this group of young kids who go off to a cabin where they’re hunted down by a hoard of horrifying zombie Nazi monsters. It’s really grisly.

Anyway, although Tommy did have really good ideas about what he wanted his characters to look like for Hansel & Gretel, there were certain characters whose descriptions were much more vague—also because there was such a broad scope of characters in the film. So they did rely on us to come up with a lot of different looks based on loose descriptions. In the end, the principal characters in the film were total collaborations between Tommy, myself, and Kevin Messick, the producer, and the rest of my team here at Spectral Motion, of course.

I’d say that’s a good example of both worlds, where you have some clear ideas about a few characters, but, for another group of characters, there really isn’t a whole lot of information or a detailed description. You have to fill in a lot of blanks.

Mark Setrakian, Thom Floutz , and Mike Elizalde of Spectral Motion pose with Sammael from Hellboy.

Twilley: What kinds of things do you look for in a script to give you a clue about how a character might work—or is that something that simply comes out when you’re sketching or modeling?

Elizalde: In a script, we basically know what we’re looking for: “Enter a monster.” We know that’s what we’re going be doing, so we look for those moments in the script. Sometimes there’s a brief description—something like, “the monster’s leathery hide covered in tentacles.” That kind of stuff gives us an immediate visual as to what we want to create. Then we explore it with both two-dimensional artwork and three-dimensional artwork, and both digital and physical.

In fact [gestures at desk], these are some examples of two-dimensional artwork that we’ve created to show what a character will look like. This [points to statuette above desk] is a maquette for one of the characters in Hellboy II—the Angel of Death. This was realized at this scale so that del Toro could see it and say, “That’s it. That’s what I want. Build that.” This actually began as an illustration that Guillermo did in his sketchbook, a very meticulous and beautiful illustration that he came to us with.

The Angel of Death from Hellboy II: The Golden Army.

But that’s the process: illustration and then maquette. Sometimes, though, we’ll do a 3D illustration in the computer before we go to the next stage, just to be able to look at something virtually, in three dimensions, and to examine it a little bit more before we invest the energy into creating a full-blown maquette.

The maquette, as a tool, can be very essential for us, because it allows us to work out any bugs that might be happening on a larger scale, design-wise. Practically speaking, it doesn’t give us a lot of information as to how the wings are going to work, or how it’s going to function; but it does tell us that a human being could actually be inside of it and that it could actually work as a full-scale creature. It’s essential for those reasons.

Simon, the mechanical bird from Your Highness, before paint has been applied, revealing the internal workings.

Because you can show a director a drawing, and it might look really terrific—but, when it comes to actually making it, in a practical application at scale, sometimes the drawing just doesn’t translate. Sometimes you need the maquette to help describe what the finished piece will look like.

Manaugh: You mentioned animatronics and puppeteering. We were just up at the Jet Propulsion Lab in Pasadena yesterday afternoon, talking to them about how they program certain amounts of autonomy into their instruments, especially if it’s something that they’re putting on Mars. It has to be able to act on its own, at times, because it doesn’t have enough time to wait for the command signal from us back on Earth. I’m curious, especially with something like the robot combat show, how much autonomy you can build into a piece. Can you create something that you just switch on and let go, so that it functions as a kind of autonomous or even artificially intelligent film prop?

Elizalde: It really depends on the application. For example, when we’re filming something, a lot of times there’s a spontaneity that’s required. Sometimes actors like to ad lib a little bit. If we need to react to something that an actor is saying via a puppet—an animatronic puppet—then that live performance really is required. But we always have the option of going to a programmable setup, one where we can have a specific set of parameters, performance-wise, to create a specific scene.

For live performances on a stage, we’d probably want to program that with the ability to switch over to manual, if required. But, if it’s scripted—if it’s a beat-by-beat performance—then we know that can be programmable. We can turn on the switch and let it go. In the middle of that, you can then stop it, and have a live show, with puppeteers in the background filling in the blanks of whatever that performance is, and then you can continue with the recorded or programmed performance.

It really goes back and forth, depending on what it is the people who are putting on the production need.

The mechanical skull under structure of the Ivan the Corpse from Hellboy.

Twilley: That’s an interesting point—the idea of how a live actor responds to your creatures. Have there been any surprises in how an actor has responded, or do they all tend to know what they’re getting into by the time you’re filming?

Elizalde: They do know what they’re getting into, but it’s always rewarding to have an actor go over to the thing that you built, and stare at it, and say, “Oh, my God! Look at that thing!” They can feed off of that. I think they are able to create a more layered performance, with a lot more depth in their reactions to something if it’s actually there—if it’s present, if it has life to it, and it’s tactile.

A lot of times people turn to digital solutions. That’s also good, if the application is correct. But, you know, a lot of directors that we talk to are of the mind that a practical effect is far better for exactly that reason—because the actor does have a co-actor to work with, to play off of, and to have feelings about.

That’s one of the things that keeps us going. And, the fact is, with this business, no matter what walks through that door we know that it’s going to be a completely different set of challenges from the last thing that we did.

Mechanical puppet of Drake from a Sprite commercial. Scott Millenbaugh and Jurgen Heimann of Spectral Motion are seen here making mechanical adjustments.

Manaugh: About six years ago, I interviewed a guy who did concept art for the Star Wars prequels, and he had a kind of pet obsession with building upside-down skyscrapers—that is, skyscrapers that grew downwards like stalactites. He kept trying to get them into a movie. He would build all of these amazing 3D models and show them to the director, and the director was always excited—but then he’d turn the model upside-down and say, “Let’s do it like this!” So all the upside-down skyscrapers would just be right-side up again. In any case, this artist was then working on the recent Star Trek reboot, and there’s a brief moment where you see upside-down skyscrapers on the planet Vulcan. It's only on screen for about a second and a half, but he finally did it—he got his upside-down skyscrapers into a film.

Elizalde: [laughs] But, ohhh! For half-a-second! [laughter]

Manaugh: Exactly. Anyway, in the context of what you do here at Spectral Motion, I’m curious if there is something like that, that you’ve been trying to get into a movie for the last few years but that just never quite makes it. A specific monster, or a new material, or even a particular way of moving, that keeps getting rejected.

Elizalde: That’s an interesting question. [pauses] You know, I’d have to say no. I’d say it seems like the more freely we think, the better the result is. So it’s quite the contrary: most of the stuff we suggest actually does make it into the film, because it’s something that someone else didn’t think about. Or perhaps we’ve added some movement to a character, or we’ve brought something that will elicit a more visceral reaction from the audience—bubbly skin, for instance, or cilia that wiggle around.

I don't think I’ve really encountered a situation where I thought something would look great, but, when I brought it to a director, they said, “Nah—I don’t think that’s going to go. Let's not try that.” They always seem to say, “Let’s try it! It sounds cool!”

Mike Elizalde applies some last-minute touch-ups to actor Ron Perlman on the set of Hellboy.

We really haven’t had a whole lot of frustration—maybe only when it turns into a very large committee making a decision on the film. Then, I suppose, a certain degree of frustration is more typical. But that happens in every industry, not just ours: the more people are involved in deciding something, the more difficult it is to get a clear image of what it is we’re supposed to do.

Manaugh: When we first spoke to set-up this interview, I mentioned that we’d be touring the landfill over at Puente Hills this morning, on our way here to meet you—it’s the biggest active landfill in the United States. What’s interesting is that it’s not only absolutely massive, it’s also semi-robotic, in the sense that the entire facility—the entire landscape—is a kind of mechanical device made from methane vents and sensors and geotextiles, and it grows everyday by what they call a “cell.” A “cell” is one square-acre, compacted twenty feet deep with trash. Everyday!

But I mention this because, during our visit there, I almost had the feeling of standing on top of a mountain-sized creature designed by Spectral Motion—a strange, half-living, half-mechanical monstrosity in the heart of the city, growing new “cells” every day of its existence. It’s like something out of Hellboy II. So I’m curious about the possibilities of a kind of landscape-scale creature—how big these things can get before you need to rely on CGI. Is it possible to go up to that scale, or what are the technical or budgetary limitations?



Elizalde: We can’t build mountains yet but, absolutely, we can go way up in scale! Many times, of course, we have to rely, at least to some degree, on digital effects—but that just makes our job easier, by extending what is possible, practically, and completing it cinematically, on screen, at a much larger scale.

For example, on Pacific Rim, Guillermo del Toro’s new film that comes out this summer, we designed what are called Jaegers. They’re basically just giant robots. And we also designed the Kaiju, the monsters in the film. First, we created maquettes, just like the ones here, and we made several versions of each to reflect the final designs you’ll see in the film. Those were taken and re-created digitally so they could be realized at a much larger scale.

To that degree, we can create something enormous. There’s a maquette around here somewhere of a character we designed for the first Hellboy movie—actually, there are two of them. One of those characters is massive—about the size of a ten-story building—and the other one is much, much bigger. It’s the size of… I don't know, a small asteroid. There really is no limit to the scale, provided we can rely on a visual effects company to help us realize our ultimate goal.

The animatronic jaws and bioluminescent teeth (top) of the alien creature (bottom) designed by Spectral Motion for Attack the Block.

But going the opposite direction, scale-wise, is also something that interests us. We can make something incredibly tiny, depending on what the film requires. There is no limit in one direction or the other as to what can be achieved, especially with the power of extension through digital effects.

Manaugh: Just to continue, briefly, with the Puente Hills reference, something that we’ve been interested in for the past few years is the design of geotextiles, where companies like TenCate in the Netherlands are producing what are, effectively, landscape-scale blankets made from high-quality mesh, used to stabilize levees or to add support to the sides of landfills. But some of these geotextiles are even now getting electromagnetic sensors embedded in them, and there’s even the possibility of a geotextile someday being given mechanical motion—so it’s just fascinating, I think, to imagine what you guys could do with a kind of monstrous or demonic geotextile, as if the surface of the earth could rise up as a monster in Hellboy III.

Elizalde: [laughs] Well, now that I know about it, I’ll start looking into it!




Twilley: Aside from scale, we’re also curious about the nature of monsters in general. This is a pretty huge question, but what is a monster? What makes something monstrous or grotesque? There seems to be such a fine line between something that is alien—and thus frightening—and something that is so alienating it’s basically unrecognizable, and thus not threatening at all.

Elizalde: Exactly. Right, right.

Twilley: So how do you find that sweet spot—and, also, how has that sweet spot changed over time, at least since you’ve been in the business? Are new things becoming monstrous?

Elizalde: Well, I think my definition of a monster is simply a distortion: something that maybe looks close to a human being, for example, but there’s something wrong. It can be something slight, something subtle—like an eye that’s just slightly out of place—that makes a monster. Even a little, disturbing thing like that can frighten you.

So it doesn’t take a lot to push things to the limit of what I would consider the grotesque or the monstrous. At that point, it runs the gamut from the most bizarre and unimaginable things that you might read in an H. P. Lovecraft story to something simple, like a tarantula with a human head. Now there’s something to make me scream! I think there’s a very broad range. But you’re right: it’s a huge question.

Mark Setrakian of Spectral Motion working on the animatronic head of Edward the Troll from Hansel and Gretel: Witch Hunters.

And sometimes the monstrous defies definition. I guess it’s more of a primal reaction—something you can’t quite put your finger on or describe, but something that makes you feel uneasy. It makes you feel uncomfortable or frightened. A distortion of what is natural, or what you perceive as natural, something outside what you think is the order of things—or outside what you think is acceptable within what we’ve come to recognize as natural things—then that’s a monster. That’s a monstrous thing.

Do you recall seeing John Carpenter’s The Thing?

Manaugh: It's one of my favorite movies.

Elizalde: My goodness, the stuff in that film is the stuff of nightmares. It really is brilliantly executed, and it’s a great inspiration to all of the people in our industry who love monsters, and to all the fans all over the world who love monstrous things.

Actor Ron Perlman gets make-up applied for his role as Hellboy, as director Guillermo del Toro and Mike Elizalde from Spectral Motion stop in for a visit.

Twilley: Have there been trends over time? In other words, do you find directors look for a particular kind of monster at a particular moment in time?

Elizalde: I do think there are trends—although I think it’s mainly that there’s a tendency here in Hollywood where somebody hears a rumor that someone down the street is building a film around this particular creature, so that guy’s now got to write a similar script to compete. But sometimes the trends are set by something groundbreaking, like The Thing. Once that movie was released, everybody paid attention and a whole new area of exploration became available to create amazing moments in cinema.

Those are the real trends, you know. It’s a symbiosis that happens between the artistic community and the technological community, and it’s how it keeps advancing. It’s how it keeps growing. And it keeps us excited about what we do. We feed off of each other.

Technician Claire Flewin uses her hand to demonstrate how yak hair looks stretched over a mold.

Manaugh: Speaking of that symbiosis, every once in a while, you’ll see articles in a magazine like New Scientist or you’ll read a press release coming out of a school like Harvard, saying that they’ve developed, for instance, little soft robots or other transformable, remote-control creatures for post-disaster reconnaissance—things like that. I mention this because I could imagine that you might have multiple reactions to something like that: one reaction might be excitement—excitement to discover a new material or a new technique that you could bring into a film someday—but the other reaction might be something almost more like, “Huh. We did that ten years ago.” I’m curious as to whether you feel, because of the nature of the movies that you work on, that the technical innovations you come up with don’t get the attention or professional recognition that they deserve.

Elizalde: I think your assessment is accurate on both counts. There are times when we see an innovation, or a scientific development, that we think could be beneficial to our industry; in fact, that happens all the time. There’s cross-pollination like that going on constantly, where we borrow from other industries. We borrow from the medical industry. We borrow from the aerospace industry. We borrow, really, from whatever scientific developments there are out there. We seek them out and we do employ some of those methods in our own routines and systems.

In fact, one of our main designers, and a very dear friend of mine whom I’ve worked side by side with for years now, is Mark Setrakian. When he’s not working here with us, he is a designer at one of the labs you just described.

So there is a lot of crossover there.

The mechanical skull of the scrunt from Lady in the Water.

Manaugh: That’s interesting—do the people who work for you tend to come from scientific or engineering backgrounds, like Mark, or are they more often from arts schools? What kinds of backgrounds do they tend to have?

Elizalde: Generally speaking, I think they’re people like myself who just have a love for monsters. That’s honestly where a lot of people in our industry come from. There are people who started their careers as dental technicians and people who started out as mold-makers in a foundry. In all of those cases, people from those sorts of technical fields gravitate toward this work because of, first of all, a love for monsters and creatures, and, secondly, a technical ability that isn’t necessarily described as an art form per se. Electronics people love to work for us. People who design algorithms love to work for us. Even people with a background in dentistry, like I say, love to work for us.

There’s really no limit to the fields that bring people to this industry—they come from everywhere. The common thread is that we all love movies and we all love creatures. We love making rubber monsters for a living.

The shelves at Spectral Motion gives a good sense of the workshop's range of reference. Highlights include the Third Edition of the Atlas of Clinical Dermatology (in color), The National Audubon Society: Speaking for Nature, Marvel's Fantastic Four, The Graphic Works of Odilon Redon, and a Treasury of Fantastic and Mythological Creatures.

To go back to your previous question, there are definitely times when I think we don’t get a lot of exposure for what we do, but there is also, at some level, a kind of “don’t pay attention to the man behind the curtain” thing going on, where we don’t really want people to look backstage at what makes a movie work. We are creating a living creature for film, and that’s what we want to put across to the audience. In some ways, it’s actually better if there isn’t too much exposure as to how something was created; it’s like exposing a magic trick. Once you know the secret, it’s not that big a deal.

So we do live in a little bit of a shroud of secrecy—but that’s okay. After a film is released, it’s not unusual for more of what we did on that film to be exposed. Then, we do like to have our technicians, our artists, and what we’ve developed internally here to be recognized and shown to the public, just so that people can see how cool it all is.

I think, though, that my response to those kinds of news stories is really more of a happiness to see new technologies being developed elsewhere, and an eagerness to get my hands on it so I can see what we could do with it in a movie. And, of course, sometimes we develop our very own things here that maybe someone hadn’t thought of, and that could be of use in other fields, like robotics. And that’s kind of cool, too.

Mike Elizalde sculpting an old age Nosferatu as a personal project.

Manaugh: Finally, to bring things full circle, we’re just curious as to how Spectral Motion got started.

Elizalde: Well, I became involved in the effects industry back in 1987. It sort of just dawned on me one day that I wanted to do this for a living. I had been in the Navy for eight years when it really started getting to me—when I realized I wasn’t doing what I wanted to do with my life.

I decided that I’d come back to my home, which is Los Angeles, California, and look into becoming a creature effects guy. I was totally enamored of Frankenstein’s Monster when I was a kid. I grew up watching all the horror movies that I could see—a steady diet of Godzilla, Frankenstein, you name it. All the Universal monsters, and even more modern things like An American Werewolf in London. They just really fascinated me. That was a real catalyst for me to start exploring how to do this myself.

I also learned from books. I collected books and started using my friends as guinea pigs, creating very rudimentary makeup effects on them. And, eventually, I landed my first job in Hollywood.

Cut to fifteen years later, and I had my first experience on set with Guillermo del Toro. I was working with him on Blade II. I had done an animatronic device for the characters he was using in his film, and I was also on set puppeteering. We became very good friends. That’s when he offered me the script for Hellboy and that’s how we started Spectral Motion. I became independent. Prior to that I had worked for Rick Baker, and Stan Winston, and all the other big names in town. But this was our opportunity to make our own names—and here we are, today.

You know, this is one of those industries where you can come in with a desire and some ability, and people around you will instruct you and nurture you. That’s how it happened for me. I was taught by my peers. And it really is a great way to learn. There are schools where you can learn this stuff, as well, but my experience proved to me that the self-taught/mentored method is a very good way to go.
 
  Getting more posts...