FeedIndex
Filter: 8 mph (wind)  view all


On a brief detour on our way to visit Carlsbad, New Mexico, Venue swung through the northwest extremity of Texas, within shooting distance of the 10,000 Year Clock of the Long Now Foundation and through the looming mountainous remains of an ancient coral reef.

What was once a seabed is now desert, lifted far above the distant Gulf and criss-crossed with exploratory hiking paths.



The Guadalupe Mountains, subject to federal land preservation as the Guadalupe Mountains National Park since 1972, tower over the arid valley that first welcomed us on the drive.

"From the highway," National Geographic writes, "the mountains resemble a nearly monolithic wall through the desert." Indeed, the huge and looming landforms to our north—a landscape made from billions of dead marine organisms, compressed and laminated over millions of years into geology—seemed to hold back, for the entirety of our hike, an ominous weather front that was all but pinned there in the sky like a dark butterfly threatening a rainstorm that never arrived, unable to cross over the jagged hills.



"But drive into one of the park entrances," the magazine continues, "take even a short stroll, and surprises crop up: dramatically contoured canyons, shady glades surrounded by desert scrub, a profusion of wildlife and birds." That's exactly what we did, on a short diversion from our drive into Carlsbad.

Humans have been living in the area for at least 12,000 years, often leaving behind pictographs. They had settled what is, in reality, an ancient shoreline, an ocean coast produced tens of millions of years ago, primarily during the late Cretaceous. Indeed, the region has passed through several instances of flooding, including a Pleistocene-era salt lake 1.8 million years ago that left behind the El Paso dune field, salt flats that actually led to a brief war in the 1870s.



In any case, as can be seen in the maps of geologist Ron Blakey, who Venue interviewed at his home in Flagstaff, Arizona, about the challenge of visually representing the large-scale terrestrial changes that produced landscapes such as the Guadalupe Mountains, the region was one maritime, more like the Bahamas or Indonesia than the dry uplands of the U.S. southwest.

Map of North America during the Cretaceous-Tertiary by Ron Blakey.

At that point, warm and shallow seas extended deep into what is now northwest Texas, leaving behind uncountable billions of sea creatures whose remains later became soft limestone. This limestone, easily eroded and well-known for its propensity to form mammoth caves, is also the reason why this region is riddled from within with truly huge caverns—including Carlsbad Caverns, located at the northeastern edge of the same mountain range that forms the Guadalupes.

The possibility that equally massive, as yet undiscovered caverns might extend deep beneath the monumental cliffs and ridges we hiked along was something that lurked in the back of our minds as walked along.

In the end, our hike was uneventful but visually expansive, more a quick way to stretch our legs during a long road-trip, and an excuse to talk about lost oceans and inland seas before we headed underground into Carlsbad Caverns a few days later, than an extended visit to this truly huge National Park. But, luckily, the park will still be there when we return to Texas someday with more time our hands

Lead image courtesy of the U.S. National Park Service


On the drive from Cape Canaveral to Miami, Venue stopped off in Fort Pierce to fortify ourselves with a gator tail sandwich, when we serendipitously happened across the National Navy UDT-SEAL Museum.


A full-scale model of the Apollo Space Capsule used by Underwater Demolition Team Frogmen to practice attaching a flotation device and rescuing the astronauts after splash down.


Members of the Underwater Demolition Team suffered from nitrogen narcosis often enough that they carried these cards "so as not to be mistaken for an intoxicated person."

After a quick tour through the eclectic collection of beach survey maps, underwater demolition equipment, "multi-purpose canine" memorabilia and the Maersk Alabama lifeboat in which Captain Phillips was held hostage, and even a surreal scale model of Osama bin Laden's Abbottabod compound (the model was "donated by CBS 60 Minutes"), we were ready to hit the road again—until we noticed the curious landscaping of the Museum's grassy exterior.



Against a backdrop of palm trees and suburban shrubbery, a row of rusted iron rails jutted out from the ground to form a forest of diagonal spikes, ringed by concrete pyramids, each set in a carefully maintained circle of white sand.



Signage explained that these were obstacles used for training by Frogmen during World War II, storming a simulated Omaha Beach on the white sand of Fort Pierce. From 1943 through 1945, a Seabee battalion built copies of German defenses and placed them in the water, for repeated waves of Frogmen to practice blowing up.

When the war was over, the remaining obstacles were abandoned until, in 1991, the Army Corps of Engineers finally pulled them out and donated the least deteriorated ones to the Navy SEAL Museum.



Like a brutalist sculpture garden, the closely mown lawn was peppered with an aggressive geometry of eroding concrete. On closer inspection, a taxonomy of obstacles emerged, starting with an advance guard of horned scullys—concrete blocks adorned with three or four iron spikes that would have been placed just offshore, in six to eight feet of water, in order to rip the bottom out of landing craft.



Cut rails and hedgehogs—clusters of iron beams riveted together and scattered across the beach like jacks—would have come next, followed by sinuous rows of dragonteeth, or concrete tetrahedrons, that could stop armored vehicles.


An American casualty lying next to an anti-landing craft obstruction on Omaha Beach, June 6, 1944. Photograph from the U.S. Coast Guard Collection in the U.S. National Archives.



Of course, the German analogs of these practice obstacles cost hundreds of Allied lives. But, placed in their perfect white sand circles and scattered with an artful randomness across a Floridian lawn, the overall effect is reminiscent of nothing so much as a Japanese Zen rock garden—a carefully constructed and meticulously tended landscape of both attack and defense, anticipation and memorial.

Zen rock garden, Fukuoka Prefecture, Japan; photo via.
The Hayward Fault runs through the center of the UC Berkeley campus, famously splitting the university's football stadium in half from end to end. It has, according to the 2008 Uniform California Earthquake Rupture Forecast, a thirty-one percent probability of rupturing in a magnitude 6.7 or greater earthquake within the next thirty years, making it the likeliest site for the next big California quake.

Nonetheless, for the majority of East Bay residents, the fault is out of sight and out of mind—for example, five out of six Californian homeowners have no earthquake insurance.


The Hayward Fault trace superimposed onto a map of the University of California, Berkeley, campus, as seen in the USGS Hayward Fault Virtual Tour.

Meanwhile, three-quarters of a mile north of Memorial Stadium, and just a few hundred yards west of the fault trace, is the office of Ken Goldberg, Professor of Industrial Engineering and Operations Research at Berkeley.

Goldberg's extensive list of current projects includes an NIH-funded research initiative into 3D motion planning to help steer flexible needles through soft tissue and the African Robotics Network, which he launched in 2012 with a Ten-Dollar Robot design challenge.


Three robots from the "10 Dollar Robot" Design Challenge organized by the African Robotics Network.

Alongside developing new algorithms for robotic automation and robot-human collaboration, Goldberg is also a practicing artist whose most recent work, Bloom, is "an Internet-based earthwork" that aims to make the low-level, day-to-day shifts and grumbles of the Hayward Fault visible as a dynamic, aesthetic force.


Screenshot of Bloom, 2013, by Ken Goldberg, Sanjay Krishnan, Fernanda Viégas, and Martin Wattenberg.

Venue stopped by Goldberg's office to speak with him about Bloom and the challenge of translating invisible seismic forces into immersive artworks.

Our conversation ranged from color-field art and improvisational ballet to the Internet's value as a vehicle for re-imagining the relationship between sensing and physical reality. The edited transcript appears below.

• • •


A Bay Area seismograph. Photograph by Marcin Wichary.

Nicola Twilley: When did you start working with seismic readings in an artistic context, and why?

Ken Goldberg: Well, I had just finished grad school, I had started teaching at USC in the Computer Science department, and I was doing art installations on the side. And I was building robots.

I had just completed an installation for the university museum when I stumbled onto this, at the time, brand new thing called the World Wide Web. My students showed me this thing and I realized: this is the answer! The Web meant that I didn’t have to schlep a whole bunch of stuff to a museum and fight with all their constraints and make something that, in the end, only 150 people would actually get out to see. Instead, I could put something together in my lab and make it accessible to the world. That’s why we—I worked with a team—started developing web-based installations.


The Telegarden, 1995-2004, networked art installation at Ars Electronica Museum, Austria. Co-directors: Ken Goldberg and Joseph Santarromana Project team: George Bekey, Steven Gentner, Rosemary Morris Carl Sutter, Jeff Wiegley, Erich Berger. Photo by Robert Wedemeyer.

We actually built the first robot on the Internet, as an art installation. It got a lot of attention—tens of thousands of people were coming to that. Then we did a second version called The Telegarden, which is still the project I’m probably best known for. It was a garden that anyone online could plant and water and tend, using an industrial robotic arm, and it was online for nine years. I actually just found out that there’s a band called Robots in the Garden, which is exciting.

What was really interesting to me about The Telegarden was this idea of connecting the physical world, the natural world, and the social world through the Internet. I was interested in the questions that come up when the Internet gives you access not just to JSTOR libraries and to digital information, but also to things that are live and dynamic and organic in some way.

That really drove my thinking, and my colleagues and I began to do a lot of research in that area. I registered some patents and won a couple of National Science Foundation awards, formed something called the Technical Committee on Networked Robots, and wrote a lot of papers. From the research side of it, there are a lot of interesting questions, but, from the art side, it also led to a series of projects that look at how such systems were being perceived, and how they were shaping perception.

I worked with Hubert Dreyfus on a philosophical issue that we call “telepistemology,” which is the question of: what is knowledge? What counts as objective distance? In other words, people were interacting with this garden remotely, and that raised the question of whether or not, and how, the garden was real, which is the fundamental question of epistemology.


The Telegarden, 1995-2004, networked art installation at Ars Electronica Museum, Austria. Co-directors: Ken Goldberg and Joseph Santarromana Project team: George Bekey, Steven Gentner, Rosemary Morris Carl Sutter, Jeff Wiegley, Erich Berger. Photo by Robert Wedemeyer.

Epistemology has always been affected by technologies like the telescope and the microscope, things that have created a radical shift in how we sense physical reality. As we started thinking about this more, we became interested in how the Internet is causing an analogous shift, in terms of, hopefully, reinvigorating skepticism about what is real and what is an artifact of the viewing process. I edited a book on this for MIT Press that came out in 2000.

In the middle of all that, then, I moved here and met someone from the seismology group. They agreed to give me access to this live data feed of movements on the Hayward Fault, a tectonic fault that cuts right through the center of Berkeley—in fact, right through the middle of campus, not far from here. I was really interested in this idea of connecting to something that was not just the contained environment of a garden, but something much more dynamic and naturally rooted and global.

I guess I should add, as well, that a big factor for me was when I moved up here and became intrigued by the total amnesia and denial that people here have about their seismic situation. I would ask people, “What do you have in your earthquake kit?” And they would reply, “What? What are you talking about?” Now, of course, twenty years later, I don’t have an earthquake kit, either. [laughs]

Manaugh: I think that’s quite a common scenario. When we first moved out to California, we bought several gallons of water, a few boxes of Clif Bars, extra flashlights, and even earthquake insurance, and the native Californians I knew here just looked at us like we were paranoid survivalists, hoarding ammunition for Doomsday.

Goldberg: It was that sort of reaction that got me thinking a lot about how people are not conscious of the fault, or about earthquakes, in general, and I began wondering how you could make that more visually present. Also, the old seismograph was an interesting visual metaphor for me. Everyone recognized that form, but I wanted to play with it. I thought we could make a live, web-based version, which you can actually still see online.

Twilley: What form did that take?

Goldberg: The very first version was just a simple trace across a black screen. It was called Memento Mori and it was meant to be super-minimalist. In fact, when I showed it to the seismologists, they said, “Oh, where’s the grid? How can we quantify this without a scale?” I had to say, no, no, it’s not about that. We’re just showing a sense of this—a visible signal. We actually wanted people to make an analogy with a heart monitor.



Screenshots from Memento Mori, 1997-ongoing, Internet-based earthwork, Ken Goldberg in collaboration with Woj Matuskik and David Nachum.

What’s also interesting is that the trace mutates quite a bit. You come in at different times of the day and the signal is very different. It’s sort of like the weather. The fault has different moods. When there is an earthquake, people will see big swings of activity with rings, because it goes on for days and days afterward. In fact, when there’s a big earthquake in Turkey, you can pick it up here. It strikes the earth and then a signal comes around at the speed of sound, and then it goes all the way around again, and you get these echoes for weeks. Very small echoes can go on for months. And, every time there is a tremor, we get a huge spike in traffic.

I also liked the idea of making a long form artwork, like Walter De Maria’s Earth Room, online.


The New York Earth Room, 1977, Walter De Maria. Long-term installation at 141 Wooster Street, New York City. Photograph via.

Manaugh: Like a seismic Long-Player?

Goldberg: Exactly.

Part of this, I think, is that as an engineer, I’m really intrigued by the challenge of how you make the system stay on. A lot of times we have robotic projects, but they work once or twice, and then that’s it. I feel like that’s deceiving, because people may see them, or watch a video, and then they take away a certain sense of what robotics is. You have to be careful, because it sets false expectations. The kind of robotics in which you really build a system that can stay online and also take the kind of abuse that happens over the Internet is quite a challenge. I’m very big on this issue of reliability and robustness.

In any case, we put the Memento Mori system online and, after a year or two, Randall Packer, a composer here, approached me and said, “What about adding an auditory component?”

The actual signal frequency is too low—it’s inaudible. If you just attach a speaker to it, nothing comes out. What you want to do is use it to trigger sounds, so that, essentially, the signal becomes like a conductor’s baton, triggering this orchestra of sounds. Through that process of sonification, you can create a very auditory experience that’s still driven by the seismic signal.

Twilley: So you could be using the signal to trigger a laugh track if you wanted to?

Goldberg: Exactly—the sounds don’t have to be notes. Packer did it with a lot of natural sounds, like waterfalls and lightning and thunder—things like that—so it was very earthly. But by no means does it have to be musical. In fact, that’s where we are now with Bloom, which is my most recent project.

We renamed the new auditory version Mori. We got a commission to do a project in Tokyo, at the ICC. They actually gave us a good amount of funding, so we ramped up and built this whole seismic installation with an acoustic chamber that was about fifteen feet square and had extremely powerful subwoofers underneath the plywood floor. The whole idea was that you could walk in and you could lie on the floor. We amplified the signal a lot, and there was this real sense of immersion, like you were essentially inside the earth. What was important is that it was live. Obviously, you could do this prerecorded, but it was essential to us that this signal was coming directly from the earth in real-time.


Mori Seismic Installation, 1999-ongoing, Ken Goldberg, Randall Packer, Gregory Kuhn, and Wojciech Matusik. Photo taken at the Kitchen, New York City, April 2003, by Jared Charney.

That was started in 1999, and, as it traveled around Japan and then to the The Kitchen in New York, we got closer and closer to the one-hundredth anniversary of the 1906 earthquake. I got this idea that I wanted to do a performative version. I wanted to do it in a very big space where everybody could experience it together at the time of the one-hundredth anniversary.

About a year before the anniversary, by chance, I was seated at a table next to a dancer—actually, the dancer—from the ballet. She was the principal dancer at the San Francisco Ballet—Muriel Maffre. After a couple of drinks, I got the courage up to ask her, “Would you ever consider dancing to the sound of the earth?” Amazingly, she said yes.

So Muriel, who is just an astounding artist and performer, took this on as a project. The idea was quite radical—that she would take a live seismic signal and respond to it on stage. And it’s improv, because you don't know what’s going to happen. We worked together for about a year, and we convinced the ballet to actually perform it in the opera house. It was about a week before the actual anniversary, in the end. She performed it on stage and it was about three minutes long. She did a phenomenal job. It was just a beautiful thing.


Muriel Maffre performing Ballet Mori, image via Ken Goldberg.

Twilley: How did you connect the signal to her, on stage?

Goldberg: We connected to the signal via the Internet, and we did the sonification right there on site, feeding it into their speaker system. She was just responding to the sound on stage.

What’s so interesting about how the ballet works is that they do all these rehearsals and, then, when they actually set up for the performance, it all has to be done that same afternoon. There’s no advance set up, because the space is in so much demand. You only have a few hours to get the whole thing tuned.

In this case, we were really cranking it—telling them to just turn up the volume. It was amazing to watch this old opera house, which actually was destroyed in the 1906 earthquake and then rebuilt, start to vibrate. That was actually a big concern—were light fittings and so on going to fall?


Ruins of City Hall and the Majestic Theater in San Francisco, following the 1906 earthquake.

Manaugh: That reminds me of the artist Mark Bain, who actually got permission to install a massive acoustic set-up in a condemned building in the Netherlands; it got so loud, and the bass frequencies he was using were so extreme, that the building risked collapse—which, of course, was the entire point of Bain’s performance—but the organizers had to shut it down.

Goldberg: The facilities guys actually said to me, “We don’t want to drop the chandelier on people’s heads! What if there’s a spike in the earth’s motion that would cause the sound levels to blow up?” I don’t know if that’s even feasible, but we put a clip on it so, if there was a sudden event, the system wouldn’t be overwhelmed.

From there, I went on to do a limited series of the original Memento Mori piece that collectors could purchase. There was an artist’s edition that would always be publicly available, but people who bought their own edition got their own version that they could label, and that included some private data. But, in the course of developing that, I started thinking, why does it have to be so grim? When I originally conceived it, I was really into the minimalist aesthetic. It was just black and white and about mortality. But I started thinking: why? It started seeming very dark.

So I started thinking about what else this signal could be used to generate, something that would be more visually stimulating and more engaging. That’s what gave rise to my new project, Bloom. Bloom is meant, in some sense, to invoke something that’s more natural and organic. It still references mortality, but in a much more positive way. Maybe it’s because I’m getting a little older or something like that!


Screenshot of Bloom, 2013, by Ken Goldberg, Sanjay Krishnan, Fernanda Viégas, and Martin Wattenberg.

Bloom is basically the idea that all flesh is grass, and that we can look at natural plant growth and organic material as outgrowths of the Earth. The seismic signal is a representation and reminder of this organic substrate, so I thought: let’s use it to trigger the growth of forms. I’m just going to play it for you. [launches beta version of Bloom]

Manaugh: What are we actually seeing right now? What scale of seismic activity do these blooms represent?

Goldberg: What you’re seeing right now is just normal variation. For example, when a big truck goes up Hearst Avenue, which is not far from the seismometer, there’s a signal from that. And then, at any given time, there are actually lots of tremors going on around the world, so you’re picking up all the echoes of those. It’s actually really rich to try to do signal-processing in order to extract signals from the noise, because there are also resonant elements from, for example, the beating of the surf on the California coast.

There’s actually a huge amount of information coming through here. What’s interesting is that this display is so different to what earth scientists are used to looking at. They study plots and seismographs, and so on. We’re actually going to have a meeting with them to talk about their perceptions of this and how they respond to it. My sense is that they probably won’t find it that valuable, because there’s no real scientific benefit to it—although it would be interesting to see if someone who really understands the signal could look at this thing for a while and actually start to read it.

For us, it’s really more of an abstraction.








A sequence of screenshots of Bloom, 2013, by Ken Goldberg, Sanjay Krishnan, Fernanda Viégas, and Martin Wattenberg.

Twilley: Can you explain how the blooms’ particular colors and forms are generated?

Goldberg: The blooms are triggered from left to right, so there’s still this idea of temporal progression, and they are triggered depending on whether the signal is switching. The relative size of each bloom is generated by the size of the signal change. The color choices come from a feed from Flickr—a search for flower images to pull up a data set that we can use to source the color variations.

I’m working with these two wonderful data visualization folks, Martin Wattenberg and Fernanda Viégas. They are amazing: Martin has a Math PhD from Berkeley and went off to work at IBM. He’s done a huge number of these visualizations for data of all kinds—most famously, for baby name data. All of his interfaces are just fantastic and we’ve been friends for a long time. He then started working with someone I knew from MIT, Fernanda, who is a painter by training. The two of them started to do all these amazing projects with IBM, and they had their own lab, which they eventually took private. Then they got bought by Google, but Google seems to give them pretty free rein to do whatever they want. We started working on this about a year ago.


Mysteries: Afloat, 2000, Kenneth Noland.

I should also explain the reference to Kenneth Noland. I’ll confess to you—I didn’t really know his work when I began this project. I gave a talk to some art historians, and they said, “Oh, it’s so nice that you’re referencing Kenneth Noland in this way!” I was like, “Who?” They were a little horrified. [laughter]

Noland was a New York color-field painter, whose work is a lot like what we had started generating with Bloom—so I dedicated the project to him. We wanted to play with that reference. What’s amazing is that he passed away just a year ago.


Screenshot of Bloom, 2013, by Ken Goldberg, Sanjay Krishnan, Fernanda Viégas, and Martin Wattenberg.

In any case, we’re still fine-tuning things, including the fades and the way that the colors are derived from the data and how it’s going to be installed in the gallery and so on. The experience in the museum is always more immersive and hopefully more dramatic than it is online. The ideal situation for me is that you would come in on a kind of balcony and you could look down twenty or thirty feet and see all of the colors blooming there below you.


Bloom installed at the Nevada Museum of Art

Bloom is currently on display at the Nevada Museum of Art, Venue’s parent institution, through June 16, 2013.



When European farmers arrived in North America, they claimed it with fences. Fences were the physical manifestation of a belief in private ownership and the proper use of land—enclosed, utilized, defended—that continues to shape the American way of life, its economic aspirations, and even its form of government.

Today, fences are the framework through the national landscape is seen, understood, and managed, forming a vast, distributed, and often unquestioned network of wire that somehow defines the "land of the free" while also restricting movement within it.

In the 1870s, the U.S. faced a fence crisis. As settlers ventured away from the coast and into the vast grasslands of the Great Plains, limited supplies of cheap wood meant that split-rail fencing cost more than the land it enclosed. The timely invention of barbed wire in 1874 allowed homesteaders to settle the prairie, transforming its grassland ecology as dramatically as the industrial quantities of corn and cattle being produced and harvested within its newly enclosed pastures redefined the American diet.

In Las Cruces, New Mexico, Venue met with Dean M. Anderson, a USDA scientist whose research into virtual fencing promises equally radical transformation—this time by removing the mile upon mile of barbed wire stretched across the landscape. As seems to be the case in fencing, a relatively straightforward technological innovation—GPS-equipped free-range cows that can be nudged back within virtual bounds by ear-mounted stimulus-delivery devices—has implications that could profoundly reshape our relationships with domesticated animals, each other, and the landscape.

In fact, after our hour-long conversation, it became clear to Venue that Anderson, a quietly-spoken federal research scientist who admits to taping a paper list of telephone numbers on the back of his decidedly unsmart phone, keeps exciting if unlikely company with the vanguard of the New Aesthetic, writer and artist James Bridle's term for an emerging way of perceiving (and, in this case, apportioning) digital information under the influence of the various media technologies—satellite imagery, RFID tags, algorithmic glitches, and so on—through which we now filter the world.


The Google Maps rainbow plane, an iconic image of the New Aesthetic for the way in which it accidentally captures the hyperspectral oddness of new representational technologies and image-compression algorithms on a product intended for human eyes.

After all, Anderson's directional virtual fencing is nothing less than augmented reality for cattle, a bovine New Aesthetic: the creation of a new layer of perceptual information that can redirect the movement of livestock across remote landscapes in real-time response to lines humans can no longer see. If gathering cows on horseback gave rise to the cowboy narratives of the West, we might ask in this context, what new mythologies might Anderson's satellite-enabled, autonomous gather give rise to?

Our discussion ranged from robotic rats and sheep laterality to the advantages of GPS imprecision and the possibility of high-tech herds bred to suit the topography of particular property. The edited transcript appears below.

• • •

Nicola Twilley: I thought I'd start with a really basic question, which is why you would want to make a virtual fence rather than a physical one. After all, isn’t the role of fencing to make an intangible, human-determined boundary into a tangible one, with real, physical effects?


Pasture fence; photograph via Cheyenne Fence.

Dean M. Anderson: Let me put it this way, in really practical terms: When it comes to managing animals, every conventional fence that I have ever built has been in the wrong place the next year.

That said, I always kid people when I give a talk. I say, “Don't go out and sell your U.S. Steel stock—because we are still going to need conventional fencing along airport runways, interstates, railroad right-of-ways, and so on.” The reason why is because, when you talk about virtual fencing, you're talking about modifying animal behavior.

Then I always ask this question of the audience: “Is there anybody who will raise their hand, who is one hundred percent predictable, one hundred percent of the time?”

The thing about animal behavior is that it’s not one hundred percent predictable, one hundred percent of the time. We don’t know all of the integrated factors that go into making you turn left, when you leave the building, rather than right and so on. Once you realize that virtual fencing is capitalizing on modifying animal behavior, then you also realize that if there are any boundaries that, for safety or health reasons, absolutely cannot be breached, then virtual fencing is not the methodology of choice.

I always start with that disclaimer. Now, to get back to your question about why you’d want to make a virtual fence: On a worldwide basis, animal distribution remains a challenge, whether it’s elephants in Africa or Hereford cows in Las Cruces, New Mexico.


Photograph via Singing Bull Ranch, Colorado.

You will have seen this, although you may not have recognized exactly what you were looking at. For example, if you fly into Albuquerque or El Paso airports, you will come in quite low over rangeland. If you see a drinking water location, you will see that the area around that watering point looks as brown and devoid of vegetation as the top of this table, whereas, out at the far distance from the drinking water, there may be plants that have never seen a set of teeth, a jaw, or any utilization at all.

So you have the problem of non-uniform utilization of the landscape, with some places that are over utilized and other places that are underutilized. The over utilized locations with exposed soil are then vulnerable to erosion from wind and water, which then lead to all sorts of other challenges for those of us who want to be ecologically correct in our thinking and management actions.

Even as a college student, animal distribution was something that I was taught was challenging and that we didn't have an answer to. In fact, I recently wrote a review article that showed that, just in the last few years, we have used more than sixty-eight different strategies to try to affect distribution. These include putting a fence in, developing drinking water in a new location, putting supplemental feed in different locations, changing the times you put out feed, putting in artificial shade, so that animals would move to that location—there are a host of things that we have tried. And they all work under certain conditions. Some of them work even better when they’re used synergistically. There are a lot of combinations—whatever n factorial is for sixty-eight.


Cattle clustered under a neatly labeled portable shade structure; photograph via the University of Kentucky College of Agriculture.

But one thing that all of them basically don’t allow is management in real time. This is a challenge. Think of this landscape—the Chihuahuan desert, which, by the way, is the largest desert in North America. If you’ve been here during our monsoon, when we (sometimes) receive our mean annual nine-inches plus of precipitation, you’ll see that where Nicola is sitting, she can be soaking wet, while Geoff and I, just a few feet away, stay bone dry. Precipitation patterns in this environment can be like a knife cut.


Students learning rangeland analysis at the Chihuahuan Desert Rangeland Research Center; photograph by J. Victor Espinoza for NMSU Agricultural Communications.

You can see that, with conventional fencing, you might have your cows way over on the western perimeter of your land, while the rainfall takes place along the other edge. In two weeks, where that rain has fallen, we are going to have a flush of annuals coming up, which would provide high-quality nutrition. But, if you have the animals clear over three pastures away, then you’ve got to monitor the rainfall-related growth, and you’ve got to get labor to help round those animals up and move them over to this new location.

You can see how, many times as a manager, you might actually know what to do to optimize your utilization, but economics and time prevent it from happening. Which means your cows are all in the wrong place. It’s a lose-lose, rather than a win-win.


One of Dean Anderson's colleagues, Derek Bailey, herds cattle the old-fashioned way on NMSU's Chihuahuan Desert Rangeland Research Center. One aspect of Bailey's research is testing whether targeted grazing, made possible through Anderson's GPS collar technology, could reduce the incidence of catastrophic western wildfires. Photograph courtesy NMSU.

These annual plants will reach their peak of nutritional quality and decline without being utilized for feed. I’m not saying that seed production is not important, but basically, if part of this landscape’s call is to support animals, then you are not optimizing what you have available.

My concept of virtual fencing was basically to have that perimeter fence around your property be conventional, whether it’s barbed wire, stone, wood, or whatever. But, internally, you don't have fences. You basically program “electronic” polygons, if you will, based upon the current year’s pattern of rainfall, pattern of poisonous weed growth, pattern of endangered species growth, and whatever other variables will affect your current year’s management decisions. Then you can use the virtual polygon to either include or exclude animals from areas on the landscape that you want to manage with scalpel-like precision.

To go back to my first example, you could be driving your property in your air-conditioned truck and you notice a spot that received rain in the recent past and that has a flush of highly nutritious plants that would otherwise be lost. Well, you can get on your laptop, right then and there, and program the polygon that contains your cows to move spatially and temporally over the landscape to this “better location.” Instead of having to build a fence or take the time and manpower to gather your cows, you would simply move the virtual fence.



This video clip shows two cows (the red and green dots) in a virtual paddock that was programmed to move across the landscape at 1.1 m/hr, using Dean Anderson's directional virtual fencing technology.

It’s like those join-the-dots coloring books—you end up with a bunch of coordinates that you connect to build a fence. And you can move the polygon that the animals are in over in that far corner of the pasture. You simply migrate it over, amoeba-like, to fit in this new area.

You basically have real-time management, which is something that is not currently possible in livestock grazing, even with all of the technologies that we have. If you take that concept of being able to manage in real time and you tie it with those sixty-eight other things that have been found useful, you can start to see the benefit that is potentially possible.

Twilley: The other thing that I thought was curious, which I picked up on from your publications, is this idea that perhaps you might not be out on the land in your air-conditioned pickup, and instead you might actually be doing this through remote sensing. Is that possible?


Dean Anderson's NMSU colleague, remote sensing scientist Andrea Laliberte, accompanied by ARS technicians Amy Slaughter and Connie Maxwell, prepare to launch an unmanned aerial vehicle from a catapult at the Jornada Experimental Range. Photograph USDA/ARS.

Anderson: Definitely. Currently we have a very active program here on the Jornada Experimental Range in landscape ecology using unmanned aerial vehicle reconnaissance. I see this research as fitting hand-in-glove with virtual fencing. However—and this is very important—all of these whiz-bang technologies are potentially great, but in the hands of somebody who is basically lazy, which is all human beings, or even in the hands of somebody who just does not understand the plant-animal interface, they could create huge problems.

If you don’t have people out on the landscape who know the difference between overstocking and under-stocking, then I will want to change my last name in the latter years of my life, because I don't want to be associated with the train wreck—I mean a major train wreck—that could happen through using this technology. If you can be sitting in your office in Washington D.C. and you program cows to move on your ranch in Montana, and you don't have anybody out on the ground in Montana monitoring what is taking place …. [shakes head] You could literally destroy rangeland.

We know that electronics are not infallible. We also know that satellite imagery needs to be backed up by somebody on the ground who can say, “Wow, we've got a problem here, because what the electronic data are saying does not match what I’m seeing.”

This is the thing that scares me the most about this methodology. If people decouple the best computer that we have at this point, which is our brain, with sufficient experience, from knowing how to optimize this wonderful tool, then we will have a potential for disaster that will be horrid.


NMSU and USDA ARS scientists prepare to launch their vegetation surveying UAV from a catapult. Photograph USDA/ARS.

Twilley: One of the things I was imagining as I looked at your work was that, as we become an increasingly urban society, maybe farmers could still manage rural land remotely, from their new homes in the city.

Anderson: They can, but only if they also have someone on the ground who has the knowledge and experience to ground-truth the data—to look at it and say, “The data saying that this number of cows should be in this polygon for this many days are accurate”—or not.

You need that flexibility, and you always need to ground-truth. The only way you can get optimum results, in my opinion, is to have someone who is trained in the basics of range science and animal science, to know when the numbers are good and when the numbers are lousy. Electronics simply provide numbers.


Multispectral rangeland vegetation imagery produced by Andrea Laliberte's UAV surveys. Image from "Multispectral Remote Sensing from Unmanned Aircraft," by Andrea S. Laliberte, Mark A. Goforth, Caitriana M. Steele, and Albert Rango, 2011.

Now, you’re right, we are getting smarter at developing technology that can interpret those numbers. I work with colleagues in virtual fencing research who are basically trying to model what an animal does, so that they can actually predict where the animal is going to move before the animal actually moves. In my opinion if they ever figure that out, it’s going to be way past my lifetime.

Still, if you look at range science, it’s an art as well as science. I think it’s great that we have these technologies and I think we should use them. But we shouldn’t put our brain in a box on a table and say, “OK. We no longer need that.” Human judgment and expertise on the ground is still essential to making a methodology like this be a positive, rather than a negative, for landscape ecology.


Drawings from Anderson's patent #7753007 for an "Ear-a-round equipment platform for animals."

Manaugh: I'm curious about the bovine interface. How do you interface with the cow in order to stimulate the behavior that you want?

Anderson: I think that basically my whole career has been focused on trying to adopt innate animal behaviors to accomplish management goals in the most efficient and effective ways possible.

Here’s what I mean by that. I can guarantee that, if a sound that is unknown and unpleasant to the three of us happens over on that side of the room, we’re not going to go toward it. We’re going to get through that door on the other side as quickly as possible.

What I’m doing is taking something that’s innate across the animal world. If you stimulate an animal with something unknown, then, at least initially, it’s going to move away from it. If the event is also accompanied by an unpleasant ending experience and the sequence of events leading up to the unpleasant event are repeatable and predictable, after a few sequential experiences of these events, animals will try and avoid the ending event—if they’re given the opportunity. This is the principle that has allowed the USDA to receive a patent on this methodology.

The thing, first of all, about our technique is that it’s not a one size fits all. In other words, there are animals that you could basically look at cross-eyed and they’ll move, and then there are animals like me, where you’ve got to get a 2x6 and hit them up across the head to get their attention before anything happens.

When these kinds of systems have been built for dog training or dog containment in the past, they simply had a shock, or sometimes a sound first and then a shock. The stimulus wasn’t graded according to proximity or the animal’s personality.


Dean Anderson draws the route of a wandering cow approaching a virtual fence in order to show Venue how his DVF™ system works.

[stands up and draws on whiteboard] Let’s say that this is the polygon that we want the animal to stay in. If we are going to build a conventional fence, we would put a barbed wire fence or some enclosure around that polygon. In our system, we build a virtual belt, which in the diagrams is shaded from blue to red. The blue is a very innocuous sound, almost like a whisper. Moving closer to the edge of the polygon, into the red zone, I ramp that whisper up to the sound of a 747 at full throttle takeoff. I can have the sound all the way from very benign up to pretty irritating. At the top end, it’s as if a fire alarm went off in here—we’re going to get out, because it sounds terrible.



This video clip captures the first-time response of a cow instrumented with Dean Anderson's directional virtual fencing electronics when encountering a static virtual fence, established using GPS technology.

I’ve based the sounds and stimuli that I’ve used on what we know about cow hearing. Cows and humans are similar, but not identical. These cues were developed to fit the animal that we are trying to manage.

Now, if we go back to me as the example, I’m very stubborn. I need a little higher level of irritation to change my behavior. We chose to use electric stimulation.

I used myself as the test subject to develop the scale we’re using on this. My electronics guys were too smart. They wouldn't touch the electrodes. I’m just a dumb biologist, so…


Diagram showing how directional virtual fencing operates. The black-and-white dashed line (8) shows where a conventional fence would be placed. A magnetometer in the device worn on the cow’s head determines the animal’s angle of approach. A GPS system in the device detects when the animal wanders into the 200m-wide virtual boundary band. Algorithms then combine that data to determine which side of the animal's to cue, and at what intensity. From Dean M. Anderson's 2007 paper, "Virtual Fencing: Past, Present, and Future" (PDF).

If I’m the animal and I’m getting closer and closer to the edge of the polygon, then the electrodes that are in the device will send an electrical stimulation. In terms of what those stimulations felt like to me, the first level is about like hitting the crazy bone in your elbow. The next one is like scooting across this floor in your socks and touching a doorknob—that kind of static shock. The final one is like taking and stopping your gas-powered lawnmower by grabbing the spark plug barehanded.

What we did was cannibalize a Hot-Shot that some people buy and use to move animals down chutes. I touched the Hot-Shot output and I could still feel it in my fingertips the next morning, so we cut it right down for our version

As the cow moves toward the virtual fence perimeter, it goes from a very benign to a fairly irritating set of sensory cues, and if they’re all on at their highest intensity , it’s very irritating. It’s the 747s combined with the spark plug. Now, back from your eighth-grade geometry, you know that you have an acute angle and you have an obtuse angle. As the cow approaches a virtual fence boundary, we send the cues on the acute side, to direct her away from the boundary as quickly and with as little amount of irritation as possible. If we tried to move the cow by cuing the obtuse side, she would have had to move deeper into the irritation gradient before being able to exit it.

We don’t want to overstress the animal. So we end up, either in distance or time or both, having a point at which, if this animal decides it really wants what’s over here, it’s not going to be irritated to the point of going nuts. We have built-in, failsafe ways that, if the animal doesn’t respond appropriately, we are not going to do anything that would cause negative animal welfare issues.


Heart rate profile (beats per minute) of an 8-year-old free-ranging cross-bred beef cow before, during, and after an audio plus electric stimulation cue from a directional virtual fencing device. The cue was delivered at 0653 h. The second spike was not due to DVF cues; the cow was observed standing near drinking water during this time. From Dean M. Anderson's 2007 paper, "Virtual Fencing: Past, Present, and Future" (PDF).

The key is, if you can do the job with a tack hammer, don’t get a sledgehammer. This is part of animal welfare, which is absolutely the overarching umbrella under which directional virtual fencing was developed. There’s no need to stimulate an animal beyond what it needs. I can tell you that when I put heart rate monitors on cows wearing my DVF™ devices. I actually found more of a spike in their heart rates when a flock of birds flew over than when I applied the sound.

Now, there are going to be some animals that you either get your rifle and then put the product in your freezer, or you go put the animal back into a four-strand barbed wire fenced pasture. Not every animal on the face of the earth today would be controllable with virtual fencing. You could gradually increase the number of animals that do adapt well to being managed using virtual fencing in your herd through culling.

But the vast majority of animals will react to these irritations, at some level. They can choose at which point they react, all the way from the whisper to the lawnmower.


Diagram showing two cows responding differently to the virtual boundary: Cow 4132 (in green) penetrates the boundary zone more deeply, tolerating a greater degree of irritation before turning around. From Dean M. Anderson's 2007 paper, "Virtual Fencing: Past, Present, and Future" (PDF).

Here is the other thing: We all learn. Whatever we do to animals, we are teaching them something. It’s our choice as to what we want them to learn.

Of course, I don’t have data from a huge population that I can talk about. But, of the animals with whom I have worked—and the literature would support what I’m going to say—cows are, in fact smarter than human beings in a number of ways. If I give you the story of the first virtual fencing device that I built, I think you’ll see why I say that.

What our team did initially was cannibalize a kids’ remote control car to send a signal to the device worn by the animal. I had a Hereford/Angus cross cow, and she was a smart old girl. I started to cue her. I was close to her and she responded to the cues exactly the way I wanted her to. But she figured out, in less than five tries, that, if she kept twenty-five feet between me and her, I could press a button, and nothing would happen. I tried to follow her all over the field. She just kept that distance ahead of me for the rest of the trial—always more than twenty-five feet!

So that’s the reason why we are using GPS satellites to define the perimeter of the polygon. You can’t get away from that line.


A cow being fitted with an early prototype of Dean Anderson's Ear-A-Round DVF device. Photograph via USDA Jornada Experimental Range, AP.

What sets DVF™ apart from other virtual fencing approaches is that it’s not a one-size-fits-all. The cues are ramped, and the irritating cues are bilaterally applied, so we can make it directional, to steer the animals—no pun intended—over the landscape.

What’s interesting is that if you have the capacity to build a polygon, you can encompass a soil type, a vegetation situation, a poisonous plant, or whatever, much better than you can if you have to build a conventional fence. In building conventional fences, you have to have stretch posts every time you change the fence’s direction. That increases both materials and labor costs in construction, which is why you see many more rectangular paddocks than multi-sided polygons. Right now, you can assume that, on flat country, about fifty percent of the cost in a conventional fence is labor, and the other fifty percent is material.

Stretching barbed wire around a corner, shown in this engraving from A Treatise Upon Wire: Its Manufacture and Uses, Embracing Comprehensive Descriptions of the Constructions and Applications of Wire Ropes, J. Bucknall Smith, 1891.

Twilley: Which raises another question: Is virtual fencing cost-effective?

Anderson: It depends. I’ll give you an example to show what I mean. The US Forest Service over in Globe, Arizona, is interested in possibly using virtual fencing. Some of the mining companies over there have leases that say that before they extract the ore, and even after, the surface may be leased to people with livestock.

That country over there is pretty much like a bunch of Ws put together. In March 2012, for two-and-a-half miles of four-strand barbed wire, using T posts, they were given a quote of $63,000.

That's why they called me. [laughs]

Now, if that was next to a road, even if it cost $163,000 for those two-and-a half miles of fence, it would be essential, in my opinion, that they not think about virtual fencing—not in this day and time.

In twenty years from now—somewhere in this century, at least—after the ethical and moral issues have been worked out, instead of stimulating animals with external audio sound or electrical stimulation, I think we will actually be stimulating internally at the neuronal level. At that point, virtual fencing may approach one hundred percent effective control.


The DARPA "Robo Rat," whose movements could be directly controlled by three electrodes inserted into its brain; photograph via.

It's been done with rodents. The idea was that these animals could be equipped with a camera or other sensors and sent into earthquake areas or fires or where there were environmental issues that humans really shouldn’t be exposed to. Of course, even if it can be done scientifically, there are still issues in terms of animal welfare. What if there is a radiation leak? Do you send rodents into it? You can see the moral and ethical issues that need to be worked out.

Twilley: If that ever becomes a real-world application, will you sell your shares in U.S. Steel?

Anderson: [laughs] I have a feeling that we never will have a landscape devoid of visible boundaries. If nothing else, I want a barbed wire fence between Ted Turner’s ranch and our experimental ranch up the road here. With a visible boundary, there’s no question—this side is mine and that side is yours.


Fencing photograph via InformedFarmers.com. Incidentally, Ted Turner's Vermejo ranch in New Mexico and southern Colorado is said to be the largest privately-owned, contiguous tract of land in the United States.

Twilley: Aha—so it’s the human animals that will still need a physical fence.

Anderson: I think so. Otherwise you’re looking at the landscape and there’s absolutely nothing out there—whether it be to define ownership or use or even health or safety hazards.

Manaugh: Do you think this kind of virtual fencing would have any impact on real estate practices? For example, I could imagine multiple ranchers marbling their usage of a larger, shared plot of land with this ability to track and contain their herds so precisely. Could virtual fencing thus change the way land is controlled, owned, or leased amongst different groups of people?

Anderson: If you were to go down here to the Boot Heel area of New Mexico you could find exactly that: individual ranchers are pooling areas to form a grass bank for their common use.

Anything that I can do in my profession to encourage flexibility, I figure I’m doing the correct thing. That’s where this all came from. It never made sense to me that we use static tools to manage dynamic resources. You learn from day one in all of your ecology classes and animal science classes that you are dealing with multiple dynamic systems that you are trying to optimize in relationship to each other. It was a mental disconnect for me, as an undergraduate as well as a graduate student, to understand how you could effectively manage dynamic resources with a static fence.

Now, there are some interesting additional things you learn with this system. For example, believe it or not, animals have laterality. You probably didn’t see the article that I published last year on sheep laterality. [laughter]


USDA ARS scientists testing cattle laterality in a T-Maze. Photograph by Scott Bauer for the USDA ARS.

Twilley and Manaugh: No.

Anderson: Our white-faced sheep, which have Rambouillet and Polypay genetics, were basically right-handed. You’ll want to take a look at the data, of course, but, basically, animals are no different than you and I. There are animals that have a preference to turn right and others that have a preference to turn left.

Now, I didn’t do this study to waste government money. Think about it in terms of what I have told you about applying the cues bilaterally. If I know that my tendency is right-handed, then in order to get me to go left, I may need a higher level of stimulation on my right side than I would if you were trying to get me to go right by applying a stimulus on my left side, because it’s against my natural instincts.

With the computer technology we have today, everything we do can be stored in memory, so you can learn about each animal, and modify your stimulus accordingly. There is no reason at all that we cannot design the algorithms and gather data that, over time, will make the whole process optimized for each animal, as well as for the herd and the landscape.


Cow equipped with a collar-mounted GPS device; photography by Dave Ganskoop for the USDA ARS.

Twilley: Going back to something you said earlier about animal memory—and this may be too speculative a question to answer—I’m curious as to how dynamic virtual fencing affects how cows perceive the landscape.

Anderson: The question would be whether, if the virtual fence is on or near a particular rock, or a telephone pole, or a stream, and they have had electrical stimulation there before, do they associate that rock or whatever with a limit boundary? In other words, do they correlate visual landmarks with the virtual fence? Based on some non-published data I have collected, the answer is yes.

In fact, to give some context, there have been studies published showing that for a number of days following removal of an electric fence, cattle would still not cross the line where it had been located.

So this could indeed be an issue with virtual fencing, but—and my research on this topic is still very preliminary—I have not seen a problem yet, and I don’t think I will. Part of the reason is that cows want to eat, so if the polygon that contains the animals is programmed to move toward good forage, the cows will follow. It’s almost like a moving feed bunk, if you will. I'm sure that, in time—I would almost bet money on this—that if you were using the virtual fence to move animals toward better forage, you could almost eliminate the virtual fence line behind the animals, especially if the drinking water was kept near the “moving feed bunk.”

The other thing is that the consumer-level GPS receivers I have used in my DVF™ devices do not have the capability to have the fixes corrected using DGPS, which means that the fix may actually vary from the “true” boundary by as much as the length of a three-quarter ton pick-up. That’s to my benefit, because there is never an exact line where that animal is sure to be cued and hence the animal cannot match a particular stone or other environmental object with the stimulation event even if the virtual boundary is held static. It’s always going to be just in the general area.


A cow fitted with an early prototype of Anderson's Ear-A-Round DVF system at the Jornada Experimental Range; photograph via AP/Massachusetts Institute of Technology, Iuliu Vasilescu.

Manaugh: So imprecision is actually helpful to you.

Anderson: Yes, I believe so—although I don’t have enough data that I would want to stand on a podium and swear to that. But I think the variability in that GPS signal could be an advantage for virtual paddocks that spatially and temporally move over the landscape.

Twilley: We’ve talked about optimizing utilization and remote management, but are we missing some of the other ways that virtual fencing might transform the way we manage livestock or the land?

Anderson: Ideas that we know are good, but are simply too labor-intensive right now, will become reasonable. The big thing that has been in vogue for some time—and it still is, in certain places—is rotational stocking. The idea is that you take your land and divide it into many small paddocks and move animals through these paddocks, leaving the animals in any one paddock for only a few hours or days. It’s a great idea under certain situations, but think of the labor of building and maintaining all those fences, not to mention moving the animals in and out of different paddocks all the time.


A fence in need of repair; photograph via.

With the virtual paddock you can just program the polygon to move spatially and temporally over the landscape. Even the shape of the virtual paddock can be dynamic in time and space as well. It can be slowed down where there’s abundant forage, and sped up where forage is limited so you have a completely dynamic, flexible system in which to manage free-ranging animals.

Here’s another thing. Like anybody who gathers free-ranging animals, I have a song I use. My song is pretty benign and can be sung among mixed audiences. [sings] “Come on sweetheart, let’s go. Come on. Come on. Come on, girls. Let’s go.”



In this video clip, a cow-calf pair are moved using only voice cues (Dean Anderson's gathering song) delivered from directional virtual fencing (DVF™) electronics carried by the cows on an ear-a-round (EAR™) system.

That’s the way I talk to them, if I want them to move. One day when I was out manually gathering my cows on an ATV I put a voice-activated recorder in my pocket and recorded my song. We later transferred the sounds of my manual gathering into the DVF™ device. Then when we wanted to gather the animals we wirelessly activated the DVF™ electronics and my “song”—“Come on, girls, let’s go”—began to play. Instead of a negative irritation, this was a positive cuing—and it worked.

The cows moved to the corral based on the cue, without me actually being present to manually gather them—it was an autonomous gather.

I think this type of thing also points to a paradigm shift in how we manage livestock. Sure, I can get my animals up in the middle of night to move them, but why do that? Why not try to manage on cow time, rather than our own egotistical needs—“At eight o’clock, I want these cows in so I can brand them,” or whatever. Why not mesh management routines with their innate behaviors instead? For example, my song could maybe be matched to correspond to a general time of day when the animals might start drifting in to drink water, anyway.

Twilley: I see—it’s a feedback loop where you’re cuing behavior with the GPS collars, but you’re also gathering data. You can see where they are already heading and change your management accordingly.

Anderson: Absolutely. You are matching needs and possibilities.

Manaugh: To make this work, does every animal have to be instrumented?

Anderson: This is a very valid question, but my answer varies. All the research needed to answer this question is not in, and the answers depend on the specific situation being addressed. I have a lot of people right now who are calling me and asking for a commercial device that they can put on their animals because they are losing them to theft. With the price of livestock where it is currently, cattle-rustling is not a thing of the nineteenth century. It is going on as we speak.

If that’s your challenge, then you’re going to need some kind of electronic gadgetry on every animal for absolute bookkeeping. For me, the challenge is how do you manage a large, extensive landscape in ways that we can’t do now, and I don’t think we necessarily need to instrument every animal for virtual fencing to be effective.

Instead, if you’ve got a hundred cows, you need to ask: which of those cows should you put instruments on? As a producer, you probably have a pretty good idea which animals should be instrumented and why: you would look for the leaders in the group.


Position of two cows grazing similar pastures in Montana, recorded every ten minutes over a two-week period. The difference in their grazing patterns reveal one cow to be a hill climber and one to be a bottom dweller. Image form a USDA Rangeland Management publication (PDF) co-authored by Derek Bailey, NMSU.

What’s interesting is that there are cows that prefer foraging up on top of hills. There are others that prefer being down in a riparian area. A colleague of mine at New Mexico State University, calls them bottom dwelling and hill climbing cows and this spatial foraging characteristic apparently has heritability. So it’s possible that you could select animals that fit your specific landscape. If, as I mentioned earlier, the ease with which an animal can be controlled by sensory cues also has heritability, it seems logical to assume that you could create hightech designer animals tailored to your piece of land.

Now, when you start adding all of these things together, using these electronic gadgetries and really leveraging innate behaviors, it points to a revolution in animal management—a revolution with really powerful potential to help us become much better stewards of the landscape.


This photograph shows a worm fence, an American invention. It was the most widely built fence type in the US through the 1870s, until Americans ran out of readily accessible forests, triggering a "fence crisis," in which the costs of fencing exceeded the value of the land it enclosed. The "crisis" was averted by the invention of mass-produced woven wire in the late 1800s. Photograph from the USDA History Collection, Special Collections, National Agricultural Library.

Twilley: None of this is commercially available yet, though, right?

Anderson: That’s true—you cannot go out today and buy a commercial DVF™ system, or for that matter any kind of virtual fence unit designed specifically for livestock, to the best of my knowledge. But there is a company that is interested in our patent and they are trying to get something off the ground. I’m trying to feed this company any information that I can, though I am not legally allowed to participate in the development of their product as a federal employee.

Manaugh: What are some of the obstacles to commercial availability?

Anderson: The largest immediate challenge I see is answering the question of how you power electronics on free-ranging animals for extended periods of time. We have tried solar and it has potential. I think one of the most exciting things, though, is kinetic energy. I understand that there are companies working on a technology to be used in cellphones that will charge the cell phone simply by the action of lifting it out of your purse or pocket, and the Army has got several things going on now with backpacks for soldiers that recharge electronic communication equipment as a result of a soldier’s walking movement.


Lawrence Rome's kinetic backpack.

I don’t think the economics warrant animal agriculture developing any of these power technologies independently, but I think we can capitalize on that being developed in other, more lucrative industries and then simply adapt it for our needs. When I developed the concept of DVF™ I designed it to be a plug-and-pray device. As soon as somebody developed a better component, I would throw my thing out and plug theirs in—and pray that it would improve performance. Sometimes it did and sometimes it didn’t!

Manaugh: Have you looked into microbial batteries?

Anderson: That’s an interesting suggestion that I have not looked into. However, I have though a lot about capturing kinetic energy. If you watch a cow, their ears are always moving, and so are their tails. If we can capture any of that movement….

The other thing we need is demand from the market. In 2007, I was invited to the UK to discuss virtual fencing —the folks in London were more interested in virtual fencing than anybody else I have ever talked to in the world.

The reason was really interesting. England has a historic tradition of common land, which is basically open “green space” that surrounds the city and was originally used for grazing by people who had one or two sheep or cows. Nowadays, it’s mostly used by dog walkers, pony riders—for recreation, basically. The problem is that they need livestock back on these landscapes to actually utilize vegetation properly so certain herbaceous vegetation does not threaten some of the woody species. However, none of the present-day users want conventional fencing because of the gates that would have to be opened and shut to contain the animals. So they were interested in virtual fencing as a way to get the ecology back into line using domestic herbivores, in a landscape that needs to be shared with pony riders and dog walkers who don’t want to shut gates and might not do it reliably, anyway.

But it’s an interesting question. I’ve had some sleepless nights, up at two in the morning wondering, “Why is it not being embraced?” I think that a lot of it comes strictly down to economics.

I don’t know, at this point, what a setup would cost. But, in my opinion, there are ways we could implement this immediately and have it be very viable. You wouldn’t have every animal instrumented. You can have single-hop technology, so information uploads and downloads at certain points the animals come to with reliable periodicity—the drinking water or the mineral supplement, say. That’s not real-time, of course—but it’s near real-time. And it would be a quantum leap compared to how we currently manage livestock.


Barbed wire, patented by Illinois farmer Joseph Glidden in 1874, opened up the American prairie for large-scale farming. Photograph by Tiago Fioreze, Wikipedia.

Twilley: What do the farmers themselves think of this system?

Anderson: What I’ve heard from some ranchers is something along the lines of: “I've already got fences and they work fine. Why do I need this unproven new technology?”

On the other hand, dairy farmers who have automatic milking parlors, which allow animals to come in on their own volition to get milked, think virtual fencing would be very appropriate for their type of operation, for reasons of convenience rather than economics.


Robotic milking parlor; photograph via its manufacturer, DeLaval.

Now, let me tell you what I think might actually work. I think that environmentalists could actually be very beneficial in pushing this forward. Take a situation where you have an endangered bird species that uses the bank of a stream for nesting or reproduction. Under current conditions, the rancher can’t realistically afford to fence out a long corridor along a stream just for that two-week period. That’s a place where virtual fencing is a tool that would allow us to do the best ecological management in the most cost-effective way.

But the larger point is that we cannot afford to manage twenty-first century agriculture using grandpa’s tools, economically, sociologically, and biologically.


I.L. Elwood & Co. Glidden Steel Barb Wire, non-dated Advertising Posters, Advertising Ephemera Collection, Baker Library Historical Collections, via.

Some people have said, “Well, I think you are just ahead of your time with this stuff.” I’m not sure that’s true. In any case, in my personal opinion, if I’m not doing the research that looks twenty years out into future before it’s adopted, then I’m doing the wrong kind of research. In 2005, Gallagher, one of the world’s leading builders of electric fences, invited me to talk about virtual fencing. During that conversation, they told me that they believe that, by the middle of this century, virtual fencing will be the fencing of choice.

But here’s the thing: none of us have gone to the food counter and found it empty. When you have got a full stomach, the things that maybe should be looked at for that twenty-year gap are often not on the radar screen. As long as the barbed wire fences haven’t rusted out completely, the labor costs can be tolerated, and the environmental legislation hasn’t become mandatory, then why spend money? That’s human nature. You only do what you have to do and not much more.

The point is that it’s going to take a number of sociological and economic factors, in my opinion, for this methodology of animal control to be implemented by the market. But speaking technologically, we could go out with an acceptable product in eighteen months, I believe. It wouldn’t have multi-hop technology. It would equal the quality of the first automobile rather than being comparable to a Rolls Royce in terms of “extras”—that would have to await a later date in this century.

And here’s another idea: I think that there ought to be a tax on every virtual fencing device that is sold or every lease agreement that’s signed in the developed world. That tax would go to help developing countries manage their free-ranging livestock using this methodology because that’s where we need to be better stewards of the landscape and where we as a world would all benefit from transforming some of today’s manual labor into cognitive labor.


Herding cattle the old-fashioned way on the Jornada Experimental Range; photograph by Peggy Greb for USDA ARS.

Maybe with this technology, a third-world farmer could put a better thatched roof on his house or send his kids to school, because he doesn’t need their manual labor down on the farm. It’s fun for a while to be out on a horse watching the cows; what made the West and Hollywood famous were the cowboys singing to their cows. I love that; that’s why I’m in this profession. Still, I’m not a sociologist, but it seems as though you could take some of that labor that is currently used managing livestock in developing countries and all of the time it requires and you could transfer it into things that would enhance human well-being and education.

It’s in our own interest, too. If non-optimal livestock management is creating ecological sacrifice areas, where soil is lost when the rains come or the wind blows, that particulate matter doesn’t stop at national boundaries.

I always say that virtual fencing is going to be something that causes a paradigm shift in the way we think, rather than just being a new tool to keep doing things in the same old way. That’s the real opportunity.
 
  Getting more posts...