FeedIndex
Filter: 27 (cyanometer)  view all
On what was to be, sadly, Venue's only stop in Oregon, we went off-road to visit the world's largest organism, a colossal fungus in the remote eastern mountains of the state, about an hour west of the arid border with Idaho.



For most of the year, including the day we visited, the organism is only visible through its neighbors' distress. Armillaria ostoyae is a kind of honey fungus that parasitizes, colonizes, kills, and then decays the root systems of its conifer hosts; this leaves behind a tell-tale ring-shaped gradient of long-dead, dying, and recently infected trees.

The super-sized organism consists, for the most part, of underground rhizomorphs: long, shoestring-like threads that branch outward to find and infest new conifer roots.



(Top) Healthy trees, elsewhere in the Malheur National Forest. (Bottom) Trees felled by the world's largest organism, Malheur National Forest.

Much of the northeastern section of Oregon's Malheur National Forest is covered in discontinuous patches of fungus-killed trees. Until recently, however, they were thought to be the work of lots of separate mushrooms.

Then, in 2000, USDA researchers collected samples of fungus from a roughly four-mile square section of the forest, and cultured them together in a Petri dish; it was an experiment designed to map the boundary edges of different fungal individuals. To their surprise, the samples from different patches of forest refused to react with each other as an alien other, and subsequent tests confirmed that they were, in fact, genetically identical—all the samples came from the same individual fungus.

This single organism, which began life as a microscopic spore, had spread into a 2,385-acre web of thin, black filaments—roughly the same footprint as a second-tier American airport, such as Philadelphia International.

Further, based on estimates made for smaller individuals, Genet D, as it was fondly christened, weighs between 7,567 and 35,000 tons (an elephant, for reference, clocks in at a maximum of only 8 tons). The humongous fungus is even up there in terms of its age, which is estimated at anything from 1,900 to 8,650 years (although that is dwarfed in comparison to a 200,000-year-old patch of seagrass in the Mediterranean).


Map from the USDA guide to the Humongous Fungus, which includes GPS coordinates (PDF).

The USDA guide to the fungus (PDF) helpfully notes that the best viewpoint on the destruction wreaked by the world's largest organism is from the other side of the valley, just east of a gravel pit and next to its smaller, 482-acre cousin.

We stopped there and surveyed the devastated forest, briefly mulling the difficulties giant clones such as the humongous fungus pose to the very idea of the individual, while keeping our fingers crossed that the standing-dead trees around us wouldn't choose this moment to fall.


The Humongous Fungus in fruit. Photograph courtesy of the USDA.

In a great essay by the late Stephen Jay Gould—called, of course, "A Humongous Fungus Among Us"—Gould describes "the striking way that this underground fungal mat," in his case, a 30-acre Armillaria fungal clone in Michigan, "forces us to wrestle with the vital biological (and philosophical) question of proper definitions for individuality." He suggests, for example, that entirely new conceptualizations of parent-offspring relationships, let alone wholly new understandings of individuals and super-individuals, might be possible.

For the sake of offering an alternative, Gould asks, "Why not propose that such gigantic mats of rhizomorphs form as congeries, or aggregations made of products grown from several founding spores (representing many different parents), all twisted and matted together—in other words, a heap rather than a person?" To qualify biologically as a single individual, Gould later adds, a creature "must have a clear beginning (or birth) point, a clear ending (or death) point, and sufficient stability between to be recognized as an entity."

The "entity" all around us, then, curled up and knotted through the roots of the forest—"all twisted and matted together" both through itself and through the landscape it thrived within—was equal parts biological mystery only recently solved by genetic testing and a kind of invisible spectacle detectable only in its side-effects, a living and strangely sinister force acting on the hills from below.



Meanwhile, if you go into the Oregon woods on the hunt for the world's largest organism in the autumn, after the first rains, the fruiting honey mushrooms are supposed to be quite tasty.


In what would turn out to be, in retrospect, the northernmost stop on the 16-month Venue itinerary, we drove into the iron ranges and boreal forests of Minnesota to see a 6,000-ton machine buried inside the earth.

The Soudan Underground Mine State Park offers two ticketed tours, each very worthwhile, and we took both of them.



One tour offers a look back at the mine's history, descending 2,300 feet below the surface of the earth to explore the old drifts and stopes. Soudan was Minnesota's oldest and richest mine until U.S. Steel ceased operations in 1963, and the iron extracted here fueled East Coast steel mills, where it was transformed into the nation's railways, machinery, bridges, and weaponry.

The tour begins with a disconcertingly cold, and extraordinarily loud elevator ride shuddering deep into the artificial caverns of this now-derelict site. The ride down is itself spectacular, an all-encompassing roar of noise and darkness, occasionally broken by the film-strip like regular appearance of voids that, we learned, were the entrances of other mine levels we were dropping past. Wondering what was on that level—or that level, or the next level, or this other one—as they flickered by in the gloom allowed the full, nearly overwhelming size of the mine to sink in.

While the historic tour lacks the hokey, interpretive dimension of many other such mine tours, the genuinely hive-like nature of the Soudan Mine—a volumetrically incomprehensible human-carved labyrinth—is only loosely communicated. Only half-joking, we speculated that this might very well be to keep unprepared visitors from experiencing a kind of existential panic upon descent into the 50-plus miles of subterranean chambers.



What sets the Soudan Mine apart, though, is the gigantic high energy physics experiment buried in its bowels. On the accompanying "science tour," visitors have the chance to marvel at the three-story tall, 6,000-ton MINOS "far detector," a kind of catcher's mitt for subatomic particles called neutrinos.

More specifically, these are artificially generated neutrinos fired north from Fermilab outside Chicago. The neutrinos are produced by a complex series of subterranean graphite targets and vacuum pipes just outside Chicago, which transform a spray of protons from Fermilab's "Main Injector" particle accelerator into a focused beam of tiny neutrinos, traveling the 455 miles through the planet between their source and the detector in just 0.0025 seconds.



The neutrinos can make that journey without getting deflected or absorbed by layers of dense bedrock in between because they almost never interact with matter, zipping straight through earth, air, water, and, indeed, people, at a rate of 100 trillion per second, without leaving a single trace.

That same property, however, makes neutrinos extremely difficult to detect—they have been nicknamed the "ghost particle." Not altogether inaccurately compared to a huge camera, the MINOS detector is made from 485 iron plates studded with sensors, each of which is a buffer for slowing down and, in the end, capturing any neutrinos that spiraled through the room. With a trap rate of about one neutrino every two hours, MINOS is able to measure their oscillation speed, which, our guide explained, holds the key to understanding whether these ubiquitous yet elusive particles have mass, and, if so, how much.



While an advanced degree in physics would probably be necessary to tease out the specifics of the experiment and its findings thus far, it's equally awe-inspiring just to gaze on the dense nest of magnetized steel plates, bunched cables, and a multilevel maze of walkways that we were unable to explore, all constructed to capture evidence of an unlikely and otherwise invisible interaction. It's like sci-fi spy technology, with hidden machines picking up and decoding secret broadcasts within the earth.

Elsewhere in the cavern lay the remains of an abandoned earlier experiment designed to witness proton decay (an event that has still not been observed) and a cryogenic dark matter detector, hunting for WIMPs — the heavy, slow, and potentially even more difficult-to-detect cousins of neutrinos.



Interestingly, MINOS, while being an acronym for Main Injector Neutrino Oscillation Search, also refers to Minos, the mythological king who commissioned Daedalus's labyrinth but went on to be a judge in Hades, the underworld of lost souls.

In the end, it was hard not to wonder what will happen to the machine itself—so heavy it seems effectively pointless for anyone ever to dismantle it—and the brightly lit room it is now housed in. Within even 100, let alone 1,000, 10,000, or even hundreds of thousands of years, this huge gate of iron like a camera lens buried inside the earth, will inevitably fall into disuse, its experimental value gone, its costs too expensive to meet.



Then, someday, if it is not removed piece by piece in a mirror image of the construction process that brought it here, it will outlast even the pyramids, just as mysterious to future generations and just as geometrically abstract as those monumental constructions in the sand.

Grafton Tyler Brown & Co. map of the Comstock Lode and the Washoe Mining Claims in Storey & Lyon Counties, Nevada, published in 1873, via.

Although tourism is now Nevada's largest employer, the state was born from a mining boom in the 1860s, inspired by the discovery of a rich vein of silver ore christened the Comstock Lode.

Extraction still plays a signficant role in shaping the state's landscape and economy: the Nevada Bureau of Mines and Geology lists 29 gold and silver mines in its 2010 Mineral Industry Census, alongside claims that the state "continues to be in the midst of the biggest gold boom in U.S. history," producing up to eight times as much over the past thirty years as California did during its fabled Gold Rush.


Mine tour photographs by Nicola Twilley.

To get a glimpse of the state's subterranean origins, Venue visited Chollar Mine in Virginia City, which, between 1859 and 1942, yielded enough silver (and some gold) to rank as the third most productive mine on the Comstock. Curiously enough, it's now offered for sale, along with some mineral rights, although our guide assured us that it's much more viable as a tour business than as a working mine, given the flooding in the lower levels, the effort required to retrieve the remaining ore, and the not-insignificant cost of all the impact studies and permits needed to start a mining operation in Nevada today.


Gorgeous U.S. Geological Survey maps of the shafts and tunnels of the Comstock mines, published in 1881. The different colors used indicate each separate hundred feet of depth. From the David Rumsey collection in the Harvard University digital map library.

The Comstock Lode is legendary not just for the mineral wealth it yielded (an inflation-adjusted $400 million in silver per year, plus another $270 million in gold, at peak production in 1877), but for its role as a catalyst for extraction technology innovation.

As our guide explained, one of the major challenges faced by the miners was an ongoing battle against flooding from below by geothermal waters. When the Chollar Mine teamed up with neighboring mines to sink a new shaft to 3250 ft., they had to pump out 5 million gallons of water per day, as well as construct a special underground cooling chamber by lowering in big blocks of ice and buckets of ice water. Workers would spend 15 or 20 minutes working in the heat, and 15 or 20 minutes recovering in the cooling chamber, back and forth throughout their eight-hour shift.


The odd-looking structure to the right-hand side of the photograph is the head of the Combination Shaft, the deepest ever sunk on the Comstock, and so-called because it was a joint effort between the Chollar, Potosi, Hale & Corcross, and Savage mines.

In response, a 30-year-old German immigrant called Adolph Sutro proposed a wildly ambitious solution — drilling a 4-mile tunnel into the mountain that would use gravity to drain its mines from below, while simultaneously allowing equipment and ore to be shipped in and out at valley level rather than lowered and hauled up and down the mine shafts.

Work began on the Sutro Tunnel in 1869 and it opened in 1878 — but, by then, the Comstock had passed peak production, and improved ventilation and pump technology had already delivered many of the tunnel's proposed benefits. Sutro unloaded his own shares as soon as the tunnel was completed, and while his stockholders lost millions, he moved to San Francisco and became mayor.


The Sutro Tunnel entrance, then and in 2007, via the Library of Congress Historic American Buildings Survey and Rich Moreno.

The Sutro Tunnel has caved in in places now, and its entrance is off-limits, on private land. It is, nonetheless, a remarkable engineering landmark, and the direct forerunner of the large access and drainage tunnels still used by mines today.


Our guide told us this story while we stood 100 ft. underground in a stope — an auditorium-like hollow that had been mined out. Shored up tunnels and shafts led to more stopes, all around and beneath us — some as big as skyscrapers. And, in the second of the Comstock's engineering marvels, all of these underground voids are filled with cubes of heavy girders, arranged in regular grids like a wooden honeycomb inside the earth.


A cross section of Virginia City's Belcher Mine, via the Nevada Historical Society.

According to a 1912 history of Nevada, this "square-set" timbering system was invented by another German, Philipp Desdeheimer, as a modular solution that could be extended in any direction, "so as to fill in any ore-chamber as fast as the ore is taken out."

The unit in itself lies within the scope of a man's arms, but, built up in a series, it filled the vacant spaces left by the removal of the Con Virginia bonanza, hundreds of feet in height, in width, and in length.

The resulting lattice-work of notched timbers, held in place by the pressure of the rock all around them, looks uncannily like the skeleton of a skyscraper, stripped in order to construct its mirror image above ground.


A lumber mill at Lake Tahoe, via.

Indeed, as the miners followed the vein of silver further into Mt. Davidson, more than 100 square miles of old growth pines around Lake Tahoe were clear-cut, with the forest brought underground to replace the minerals. Logging, our guide told us, quickly became the second biggest industry in Nevada, as the territory's newcomers rushed to rearrange its resources.

This gridded timber superstructure, stretching for miles underground, as the rocks whose place it took were transmuted into coin, forms a sort of forgotten Continuous Monument of extraction — a ghost forest built underground, in search of silver.

Thanks to Ronald James, the Nevada State Historic Preservation Officer, for the suggestion. If you think of any sites or people that Venue should visit, please let us know!
 
  Getting more posts...