FeedIndex
Filter: 26  view all
The largest collection of wild yeasts in the world fits inside a single beige chest freezer, humming quietly at the back of a busy lab in the University of California at Davis's shiny new Robert Mondavi Institute for Wine and Food Science.



The Phaff Yeast Culture Collection, as it's known, consists of more than 7,000 strains of 750 different species of the single-celled fungi, mixed with glycerine in cryogenically stored vials or freeze-dried into pellets. Roughly 80 percent of them are not held by any other yeast library in the world.



Kyria Boundy-Mills
, the Phaff Collection curator, knows this because last year she surveyed her global yeast-collecting colleagues, then published her findings in the Journal of Industrial Microbiology and Biotechnology. Her own yeast empire is one of several such microbial archives around the world, ranging from broad national "type" libraries to niche collections specializing in microbes from reefs, breweries, and even Antarctic explorers' huts.

As Boundy-Mills showed Venue around her office and lab, she explained that the Phaff Collection's main focus is yeasts isolated from environmental habitats: gathered from sewage sludge, vanished cacti forests, cockroaches, hot springs, glaciers, human cerebrospinal fluid, and a mare's uterus.



The oldest yeast in the collection was isolated by the UC Berkeley cellarmaster in 1893. When Venue visited, Boundy-Mills was still busy processing the 150 new species of yeast she brought back from a 2011 National Institutes of Health-funded biodiversity survey expedition in Indonesia.

"Nearly half of them are new to science," she told us, which makes them a lot of work. "That’s lifetime’s worth of work there, just to describe 60 new species."

The expedition, which included entomologists, botanists, and ichythologists, cataloged such an immense richness of biodiversity that, Mills told Venue, their research site has now been proposed as a national park. "If it's passed," she said, "it will be the first national park in Indonesia to be declared based on biodiversity data—and one of the first in the world based specifically on biodiversity."

The unspoken implication here—that there could even someday be a yeast-based national park—raises the fascinating subject of scale when discussing the types of landscapes or habitats we consider worthy of preservation. Could a single, microbiologically rich room or building be biologically important enough to be declared a national park?

In any case, while other colleagues focused on collecting and identifying microbes and plants with therapeutic potential, Boundy-Mills' focus was on possible bioenergy applications. Specifically, this meant looking for new enzymes that can break down plant materials to simpler sugars, as well as new yeast varieties that can eat sugar and turn it into oil. As Boundy-Mills explained:

Most yeasts will stop eating when they’re no longer hungry. But there are a few yeast species that keep eating the sugar—and eating it and eating it—and they convert it to oil and store it. Under the microscope, you see these big, huge oil droplets inside the cells. They can be up to 60 percent oil—they’re like these obese, couch-potato yeasts.

To find enzymes that can break down plant material, Boundy-Mills and her team sampled the gut microbes of wood-feeding beetle larvae, as well as the decaying wood around them. Meanwhile, a lot of the high-oil yeasts that Boundy-Mills brought back were isolated from the surface of leaves, with some coming from the soil.


Dissected Buprestid beetle larvae, photograph by Irnayuli Sitepu (UC Davis; Ministry of Forestry, Indonesia).

Yeast cells, at only a couple of microns in length, are frequently more of a challenge to isolate for collection than plants or fish. In some cases, Boundy-Mills would just take a sterile bag, put it around a leaf, pluck it off, and pour in some sterile saline solution. After it had swished around for a while, she would put that liquid on an agar plate to culture any microbes that had been on the leaf's surface. Meanwhile, she told us with evident glee, a lot of the high-oil yeasts form ballistospores, meaning that they shoot out their spores, firing them several millimeters into the air:

This is kind of cool. For them, we smeared some Vaseline inside the lid of the Petri plate, and we stuck some pieces of leaf in the lid. If the yeast can make these ballistospores, they will shoot those down onto the agar surface and grow there. It’s called the ballistospore capture method.

Now that she has these Indonesian couch-potato yeasts back in the lab (after mountains of import and and export paperwork, and a lengthy process of purification and DNA analysis), Boundy-Mills is not only observing their oil production performance, but also studying the other by-products that could possibly come out of the yeast cell, in order to make it an economically viable biofuel production process.

As well as oils, some of her yeasts produce protein, anti-oxidants, and even flavoring ingredients. Elsewhere in the collection are yeasts that show promise in agricultural pest control or are used in food processing.

One strain, Phaffia rhodozyma, was originally isolated on a tree stump in Japan, and is now used industrially to produce a dietary supplement for farmed salmon and shrimp, to make them pinker.



In addition to her own research and the occasional yeast-hunting expedition, Boundy-Mills spends her time preparing and sending out strains to researchers who request them, and maintaining the collection—no small task, as the yeasts are far from immortal, even in the extreme cold, so each strain has to be re-cultured on agar in Petri dishes every five years.


Kyria Boundy-Mills with Herman Phaff's notebooks. Phaff, who founded the collection, focused on the ecology of yeast, recording copious contextual notes on their functionality in nature, their interaction with decaying plant material, and the insects that live alongside them.


The Yeasts: A Taxonomic Study has expanded from one volume (center) to three (left) over the past decade.

Boundy-Mills also acts as a kind of yeast consultant, screening and identifying yeasts for biotech companies. As we prepared to leave, she showed us her yeast bible: a taxonomic catalog of all known yeasts. To help us understand why she finds the field so exciting, she explained:

In 2001, when Hermann Phaff, who founded this collection, died, the Taxonomic Study was just one volume, with about six or seven hundred species. In 2011, they had to split it into three volumes, to accommodate more than 1,400 species. And there’s another couple of hundred yeast species that have come out since that was published.

Incredibly, while the known universe of yeasts is increasing exponentially, thanks primarily to DNA sequencing technology, it's estimated that less than one percent of the world's yeast species have been discovered.

"It's one of the most under-surveyed fields—microbes in general," Boundy-Mills sighed. "There are no yeasts that are on the endangered species list because we wouldn't even know if they were at risk. We’re spending all this time and effort exploring the extraterrestrial world, which is great. But we need to spend more time and effort exploring the terrestrial world, too. There’s so much on this planet that we just have not discovered yet!"
Between 1897 and 1930, Henry Chapman Mercer, a gentleman anthropologist, set out to collect the handmade tools of everyday American life, just as industrialization was making these tools obsolete.


In 1913, Mercer began work on a six-story poured-in-place concrete castle to house them near his home in Doylestown, Pennsylvania.

More than 30,000 objects from Mercer's collection—from tiny butter molds to car-sized threshing machines—are displayed within the soaring arches of his eccentric structure.


Many of them are simply strapped to pillars or hung from the ceiling, often giving the sense that one is standing somehow upside-down amidst the proliferation of objects. The Piranesian result is one of the most unusual and awe-inspiring museums in the world.


Rather than reproducing each tool's original workshop context to show how butchery, for example, or coopering—barrel-making—equipment was actually used, Mercer's dense sense of display, combined with the odd angles of the building's numerous alcoves and winding stairwells, force museum visitors to appreciate the tools as aesthetic objects.

The museum is thus more like a sprawling archive of hand-crafted forms, each of which embodies the needs, wants, knowledge, and available resources of 19th-century Americans.



Over 30 years, Mercer gathered a near-encyclopedic assemblage of pre-industrial tools, classifying them by trade.

Around the building's edges, scissors, pans, funnels, and confectionery molds sit next to glass-blowing pipes and pontils, while a fire-fighting engine, gallows, and a bored wooden sewage pipe hang precariously over balconies into the central atrium.




Most, if not all, of the tools are indecipherable to the modern eye. They have since been replaced by completely new technologies, or, at the very least, by mass-produced substitutes that bear little formal resemblance to the original tools they came from .


Take the hornsmithing equipment, for example: once used to turn the horns of cattle and oxen into everything from combs (and other hair accessories) to ladles, bowls, and cups, this particular breed of equipment became obsolete at the end of the 19th century. At that point, newly invented celluloid took horn's place as an all-purpose, plastic material.


Previously valuable horn-working tools—such as the standing horse, drawknife, and quarnet—were simply discarded as the particular problem they had been invented to solve disappeared.

Mercer's foresight in collecting these extinct tools allows modern visitors to see and understand an entire taxonomy of expired technologies through which early Americans shaped their world.



Aside from sheer visual spectacle, the Mercer Museum also stands as a structurally complex monument to forgotten knowledge, a sprawling and labyrinthine catalog of human ingenuity.

In the process, it new serves as a somewhat shocking—at the very least, awe-inspiring—reminder of the amount of work involved in the creating the artifacts of everyday life, work that, in an era of mass production, is often neither witnessed nor performed by human beings at all.


And, for Venue, equipped with our own motley assemblage of survey devices and instruments, the museum also offered a particularly fascinating immersion in the lessons to be learned by reading a culture through the tools and equipment it far too often takes for granted.


The museum itself—an imposing Gothic knot of arches, roofs, and chimneys—is a surreal sight, towering above the suburban homes of Doylestown.

It is open every day of the week, hours depending. It is well worth a detour for anyone passing between New York and Philadelphia.



In what would turn out to be, in retrospect, the northernmost stop on the 16-month Venue itinerary, we drove into the iron ranges and boreal forests of Minnesota to see a 6,000-ton machine buried inside the earth.

The Soudan Underground Mine State Park offers two ticketed tours, each very worthwhile, and we took both of them.



One tour offers a look back at the mine's history, descending 2,300 feet below the surface of the earth to explore the old drifts and stopes. Soudan was Minnesota's oldest and richest mine until U.S. Steel ceased operations in 1963, and the iron extracted here fueled East Coast steel mills, where it was transformed into the nation's railways, machinery, bridges, and weaponry.

The tour begins with a disconcertingly cold, and extraordinarily loud elevator ride shuddering deep into the artificial caverns of this now-derelict site. The ride down is itself spectacular, an all-encompassing roar of noise and darkness, occasionally broken by the film-strip like regular appearance of voids that, we learned, were the entrances of other mine levels we were dropping past. Wondering what was on that level—or that level, or the next level, or this other one—as they flickered by in the gloom allowed the full, nearly overwhelming size of the mine to sink in.

While the historic tour lacks the hokey, interpretive dimension of many other such mine tours, the genuinely hive-like nature of the Soudan Mine—a volumetrically incomprehensible human-carved labyrinth—is only loosely communicated. Only half-joking, we speculated that this might very well be to keep unprepared visitors from experiencing a kind of existential panic upon descent into the 50-plus miles of subterranean chambers.



What sets the Soudan Mine apart, though, is the gigantic high energy physics experiment buried in its bowels. On the accompanying "science tour," visitors have the chance to marvel at the three-story tall, 6,000-ton MINOS "far detector," a kind of catcher's mitt for subatomic particles called neutrinos.

More specifically, these are artificially generated neutrinos fired north from Fermilab outside Chicago. The neutrinos are produced by a complex series of subterranean graphite targets and vacuum pipes just outside Chicago, which transform a spray of protons from Fermilab's "Main Injector" particle accelerator into a focused beam of tiny neutrinos, traveling the 455 miles through the planet between their source and the detector in just 0.0025 seconds.



The neutrinos can make that journey without getting deflected or absorbed by layers of dense bedrock in between because they almost never interact with matter, zipping straight through earth, air, water, and, indeed, people, at a rate of 100 trillion per second, without leaving a single trace.

That same property, however, makes neutrinos extremely difficult to detect—they have been nicknamed the "ghost particle." Not altogether inaccurately compared to a huge camera, the MINOS detector is made from 485 iron plates studded with sensors, each of which is a buffer for slowing down and, in the end, capturing any neutrinos that spiraled through the room. With a trap rate of about one neutrino every two hours, MINOS is able to measure their oscillation speed, which, our guide explained, holds the key to understanding whether these ubiquitous yet elusive particles have mass, and, if so, how much.



While an advanced degree in physics would probably be necessary to tease out the specifics of the experiment and its findings thus far, it's equally awe-inspiring just to gaze on the dense nest of magnetized steel plates, bunched cables, and a multilevel maze of walkways that we were unable to explore, all constructed to capture evidence of an unlikely and otherwise invisible interaction. It's like sci-fi spy technology, with hidden machines picking up and decoding secret broadcasts within the earth.

Elsewhere in the cavern lay the remains of an abandoned earlier experiment designed to witness proton decay (an event that has still not been observed) and a cryogenic dark matter detector, hunting for WIMPs — the heavy, slow, and potentially even more difficult-to-detect cousins of neutrinos.



Interestingly, MINOS, while being an acronym for Main Injector Neutrino Oscillation Search, also refers to Minos, the mythological king who commissioned Daedalus's labyrinth but went on to be a judge in Hades, the underworld of lost souls.

In the end, it was hard not to wonder what will happen to the machine itself—so heavy it seems effectively pointless for anyone ever to dismantle it—and the brightly lit room it is now housed in. Within even 100, let alone 1,000, 10,000, or even hundreds of thousands of years, this huge gate of iron like a camera lens buried inside the earth, will inevitably fall into disuse, its experimental value gone, its costs too expensive to meet.



Then, someday, if it is not removed piece by piece in a mirror image of the construction process that brought it here, it will outlast even the pyramids, just as mysterious to future generations and just as geometrically abstract as those monumental constructions in the sand.
There are only half a dozen radon health mines in the United States, and all six of them are located within twenty minutes' drive of each other in western Montana.



The Free Enterprise Radon Health Mine is the oldest of the bunch, opening for business as Montana's first uranium mine in 1949, before transitioning its extraction focus to the more intangible resource of personal health just three years later.



"Radon therapy," the Free Enterprise brochure explains, simply "consists of series of daily visits to the Mine," where levels of the colorless, odorless, tasteless, and highly radioactive gas fluctuate between 700 to 2,200 picoCuries per liter of air. On average, they are about 1700 pC/l.



By way of contrast, the U.S. Environmental Protection Agency, which regards radon as a toxic carcinogen, classifies levels of 4 pCi/L or above as the "action point," at which homeowners should take steps to limit their exposure. In the eyes of the World Health Organization, radon inhalation is the second largest cause of lung cancer in the world. In the United States, it is responsible for about 21,000 deaths from the disease every year, according to EPA estimates.

Hence the somewhat niche appeal of radon therapy, at least in the United States. The American Medical Association roundly denounced it as quackery in the 1950s, and has not reconsidered its stance since. Elsewhere, particularly in central Europe, Russia, and Japan, radon therapy for arthritis relief is an established alternative medicine—despite the fact that no one knows quite how it works.

In Germany, for example, where resort therapy—with its emphasis on the healing power of a particular place—is a long-established tradition, purpose-built radon tunnels are accessible by prescription only, as part of the country's national health system.



When Venue visited the Free Enterprise Health Mine, which charges $8 for a 60-minute visit, a pink-carpeted elevator furnished with a single red chair—it felt vaguely like the set of a David Lynch film—took us down to our subterranean destination: a wood-framed mine shaft, 87 feet beneath the surface. Immediately to our left, a vinyl curtain screened off a heated area, in which several elderly Mennonites were sitting on thrift-store arm chairs, lawn furniture, and a couple of La-Z-Boy recliners, chatting in dialect, playing cribbage, and leafing through magazines.



The rest of the shaft stretched around to the right, at a chillier 40 degrees. The rock walls glistened with damp, and were decorated with moss, graffiti, and rusted mining tools. The occasional padded bench sat under a heat lamp, offering a more solitary immersion.



Over the course of a typical treatment, clients spend between 30 and 60 hours down in the Health Mine, spread out over a 10-day period. The claustrophobic can stay above-ground, in an "inhalatorium" whose equally radioactive air is piped from a disused level immediately below the one we visited.

The invisible, healing (or poisonous) air, sold by the hour, is, of course, a nearly endless, renewable resource: pegged to the half-life of uranium-238, this Health Mine's subterranean wealth should be good for another 4.468 billion years.
Looming over and behind the town of Butte, Montana, is the extraordinary sight of an abandoned copper mine called the Berkeley Pit.



Like something from a painting by Caspar David Friedrich, the massively altered, red-stained excavation forms a stepped and sculpted backdrop for the old brick buildings on the hill downtown.

The landscape is made almost uncomfortably spectacular, precisely by this state of post-industrial abandonment, a Gothic ruin in geologic form, where the planet has been forced to reveal its inner structure and grain, the sublime whorls of a continent stripped of their surface covering.



The current managers of the pit, as if in recognition of its Romantic appeal, greet you with a small gift shop selling postcards and trinkets.

Then, after walking through an eerie, steel-lined tunnel that feels as if you might be stepping into an antique submarine, you emerge onto—what else—a panoramic viewing deck. It's a widescreen porch overlooking the toxic vista, complete with interpretive panels and a handrail to lean on in anaesthetic rapture at the brown, rising waters below.



This is both appropriate—the grandeur of the flooded mine is almost impossibly, darkly beautiful—and seemingly an act of spatial sarcasm, as the mine is one of the nation's largest Superfund sites.

Indeed, the Berkeley Pit became briefly infamous in the 1990s when a flock of migrating geese landed on the waters and, as public understanding would have it, died shortly thereafter, possibly in minutes, possibly the very instant they touched the water.

The reality of the story is just as fatal but not nearly as immediate, mirroring the slow-motion menace of the pit's still-rising waters.


"Butte, Montana, Richest Hill on Earth; 100 Years of Underground Mining,” map by Ted Duaime, Patrick J. Kennelly, and Paul Thale of the Montana Bureau of Mines and Geology

During its operation, the mine extracted 1.5 billion tons of material from what was then known as "the richest hill on earth," in the process consuming several communities on Butte's east side. Following its closure in 1982, a new threat emerged: with the pumps in an attached shaft switched off, contaminated groundwater began gradually filling the 1,600-foot deep maw.

Laden with arsenic as well as dissolved copper and zinc, and with a highly acidic pH of 2.5, the pit water is expected to reach the natural water table by 2020—at which point, the rust-brown soup would, theoretically, stop rising. Instead, it will flow out into the surrounding groundwater, poisoning the town it once both consumed and sustained.



A local group called PitWatch, which keeps its eye on the ominous lake, provides the interpretative signage on the viewing platform. They explain that a water-treatment plant has been built in anticipation of this moment, ready to begin treating and diverting pit water as it approaches "Critical Water Level."

"The plant." the boards promise, "is designed to operate forever," siphoning off just enough water to maintain the toxic lake in an uneasy, eternal equilibrium—within sight of disaster, but never, scientists promise, actually reaching it.

The Berkeley Pit from space, courtesy of NASA.

A second claim to fame came to this abyss in Butte when local biochemists Andrea and Don Stierle found that tiny extremophile organisms—that is, organisms that love (-phile) extreme (extremo-) thermal or chemical conditions—thrive in the polluted waters.

Even better, the Stierles found, these extremophiles could potentially help to decontaminate the site—and, by extension, other such heavy metal mines around the world—but also, in the process, lead to the design of new human medicines based on their novel biochemistries. Indeed, New Scientist reported back in 2006, the mine is "a source of novel chemicals that could help fight migraines and cancer."

The idea of extracting new medical treatments from creatures living in a contaminated mine in the foothills of the northern Rockies adds a strange, sci-fi sheen to the otherwise matte, unreflective waters steadily swelling over Butte.



As we drove onward to Missoula along one of the city's many mineralogically-named roads, Iron Street, the looming rock wall of the mine followed us in the rear-view mirror till we got back onto the highway and left this town, nestled underneath its namesake hill's hollowed-out shell, behind.
Screenshot of our own SimCity (called, for reasons that made sense at the time, We Are The Champignons) after three hours of game play.

In the nearly quarter-century since designer Will Wright launched the iconic urban planning computer game, SimCity, not only has the world's population become majoritatively urban for the first time in human history, but interest in cities and their design has gone mainstream.

Once a byword for boring, city planning is now a hot topic, claimed by technology companies, economists, so-called "Supermayors," and cultural institutions alike as the key to humanity's future. Indeed, if we are to believe the hype, the city has become our species' greatest triumph.

A shot from photographer Michael Wolf's extraordinary Architecture of Density series, newly available in hardcover.

In March 2013, the first new iteration of SimCity in a decade was launched, amidst a flurry of critical praise mingled with fan disappointment at Electronic Arts' "always-online" digital rights management policy and repeated server failures.

A few weeks before the launch, Venue had the opportunity to play the new SimCity at its Manhattan premiere, during which time we feverishly laid out curving roads and parks, drilled for oil while installing a token wind turbine, and tried to ignore our city's residents'—known as Sims—complaints as their homes burned before we could afford to build a fire station.



We emerged three hours later, blinking and dazed, into the gleaming white and purple lights of Times Square, and were immediately struck by the abstractions required to translate such a complex, dynamic environment into a coherent game structure, and the assumptions and values embedded in that translation.

Fortunately, the game's lead designer, Stone Librande, was happy to talk with us further about his research and decision-making process, as well as some of the ways in which real-world players have already surprised him. We spoke to him both in person and by telephone, and our conversation appears below.

• • •



Nicola Twilley: I thought I’d start by asking what sorts of sources you used to get ideas for SimCity, whether it be reading books, interviewing urban experts, or visiting different cities?

Stone Librande: From working on SimCity games in the past, we already have a library here with a lot of city planning books. Those were really good as a reference, but I found, personally, that the thing I was most attracted to was using Google Earth and Google Street View to go anywhere in the world and look down on real cities. I found it to be an extremely powerful way to understand the differences between cities and small towns in different regions.

Google has a tool in there that you can use to measure out how big things are. When I first started out, I used that a lot to investigate different cities. I’d bring up San Francisco and measure the parks and the streets, and then I’d go to my home town and measure it, to figure out how it differed and so on. My inspiration wasn’t really drawn from urban planning books; it was more from deconstructing the existing world.

Then I also really got into Netflix streaming documentaries. There is just so much good stuff there, and Netflix is good at suggesting things. That opened up a whole series of documentaries that I would watch almost every night after dinner. There were videos on water problems, oil problems, the food industry, manufacturing, sewage systems, and on and on—all sorts of things. Those covered a lot of different territory and were really enlightening to me.



Geoff Manaugh: While you were making those measurements of different real-world cities, did you discover any surprising patterns or spatial relationships?

Librande: Yes, definitely. I think the biggest one was the parking lots. When I started measuring out our local grocery store, which I don’t think of as being that big, I was blown away by how much more space was parking lot rather than actual store. That was kind of a problem, because we were originally just going to model real cities, but we quickly realized there were way too many parking lots in the real world and that our game was going to be really boring if it was proportional in terms of parking lots.

Manaugh: You would be making SimParkingLot, rather than SimCity.

Librande: [laughs] Exactly. So what we do in the game is that we just imagine they are underground. We do have parking lots in the game, and we do try to scale them—so, if you have a little grocery store, we’ll put six or seven parking spots on the side, and, if you have a big convention center or a big pro stadium, they’ll have what seem like really big lots—but they’re nowhere near what a real grocery store or pro stadium would have. We had to do the best we could do and still make the game look attractive.


Using the zoning tool for the city designed by We Are the Champignons.

Twilley: I’d love to hear more about the design process and how you went about testing different iterations. Did you storyboard narratives for possible cities and urban forms that you might want to include in the game?

Librande: The way the game is set up, it’s kind of infinite. What I mean by that is that you could play it so many different ways that it’s basically impossible to storyboard or have a defined set of narratives for how the player will play it.


Stone Librande's storyboards for "Green City" and "Mining City" at the start of play.

Instead, what I did was that I came up with two extreme cases—around the office we call them “Berkeley” and “Pittsburgh,” or “Green City” and “Dirty City.” We said, if you are the kind of player who wants to make utopia—a city with wind power, solar power, lots of education and culture, and everything’s beautiful and green and low density—then this would be the path you would take in our game.

But then we made a parallel path for a really greedy player who just wants to make as much money as possible, and is just exploiting or even torturing their Sims. In that scenario, you’re not educating them; you’re just using them as slave labor to make money for your city. You put coal power plants in, you put dumps everywhere, and you don’t care about their health.


Stone Librande's storyboard for "Green City" at mid-game.

I made a series of panels, showing those two cities from beginning to late stage, where everything falls apart. Then, later on, when we got to multiplayer, I joined those two diagrams together and said, “If both of these cities start working together, then they can actually solve each other’s problems.”

The idea was to set them up like bookends—these are the extremes of our game. A real player will do a thousand things that fall somewhere in between those extremes and create all sorts of weird combinations. We can’t predict all of that.

Basically, we figured that if we set the bookends, then we would at least understand the boundaries of what kind of art we need to build, and what kind of game play experiences we need to design for.


Stone Librande's storyboard for "Mining City" at mid-game.

Twilley: In going through that process, did you discover things that you needed to change to make game play more gripping for either the dirty city or the clean city?

Librande: It was pretty straightforward to look at Pittsburgh, the dirty city, and understand why it was going to fail, but you have to try to understand why the clean one might fail, as well. If you have one city—one path—that always fails, and one that always succeeds, in a video game, that’s really bad design. Each path has to have its own unique problems.

What happened was that we just started to look at the two diagrams side-by-side, and we knew all the systems we wanted to support in our game—things like power, utilities, wealth levels, population numbers, and all that kind of stuff—and we basically divided them up.

We literally said: “Let’s put all of this on this side over in Pittsburgh and the rest of it over onto Berkeley.” That’s why, at the very end, when they join together, they are able to solve each other’s problems because, between the two of them, they have all the problems but they also have all the answers.


Stone Librande's storyboard for the "Green City" and "Mining City" end-game symbiosis.

Twilley: One thing that struck me, after playing, was that you do incorporate a lot of different and complex systems in the game, both physical ones like water, and more abstract ones, like the economy. But—and this seems particularly surprising, given that one of your bookend cities was nicknamed Berkeley—the food system doesn’t come into the game at all. Why not?

Librande: Food isn’t in the game, but it’s not that we didn’t think about it—it just became a scoping issue. The early design actually did call for agriculture and food systems, but, as part of the natural process of creating a video game, or any situation where you have deadlines and budgets that you have to meet, we had to make the decision that it was going to be one of the things that the Sims take care of on their own, and that the Mayor—that is, the player—has nothing to do with it.

I watched some amazing food system documentaries, though, so it was really kind of sad to not include any of that in the game.


Data layer showing ore deposits.


Data layer showing happiness levels. In SimCity, happiness is increased by wealth, good road connections, and public safety, and decreased by traffic jams and pollution.

Manaugh: Now that the game is out in the world, and because of the central, online hosting of all the games being played right now, I have to imagine that you are building up an incredible archive of all the decisions that different players have made and all the different kind of cities that people have built. I’m curious as to what you might be able to make or do with that kind of information. Are you mining it to see what kinds of mistakes people routinely make, or what sorts of urban forms are most popular? If so, is the audience for that information only in-house, for developing future versions of SimCity, or could you imagine sharing it with urban planners or real-life Mayors to offer an insight into popular urbanism?

Librande: It’s an interesting question. It’s hard to answer easily, though, because there are so many different ways players can play the game. The game was designed to cover as many different play patterns as we could think of, because our goal was to try to entertain as many of the different player demographics as we could.

So, there are what we call “hardcore players.” Primarily, they want to compete, so we give them leader boards and we give them incentives to show they are “better” than somebody else. We might say: “There’s a competition to have the most people in your city.” And they are just going to do whatever it takes to cram as many people into a city as possible, to show that they can win. Or there might be a competition to get the most rich people in your city, which requires a different strategy than just having the most people. It’s hard to keep rich people in a city.

Each of those leader boards, and each of those challenges, will start to skew those hardcore people to play in different ways. We are putting the carrot out there and saying: “Hey, play this way and see how well you can do.” So, in that case, we are kind of tainting the data, because we are giving them a particular direction to go in and a particular goal.

On the other end of the spectrum, there are the “creative players” who are not trying to win—they are trying to tell a story. They are just trying to create something beautiful. For instance, when my wife plays, she wants lots of schools and parks and she’s not at all concerned with trying to make the most money or have the most people. She just wants to build that idealized little town that she thinks would be the perfect place to live.


A regional view of a SimCity game, showing different cities and their painfully small footprints.

So, getting back to your question, because player types cover such a big spectrum, it’s really hard for us to look at the raw data and pull out things like: “This is the kind of place that people want to live in.” That said, we do have a lot of data and we can look at it and see things, like how many people put down a park and how many people put in a tram system. We can measure those things in the aggregate, but I don’t think they would say much about real city planning.

Twilley: Building on that idea of different sorts of players and ways of playing, are there a variety of ways of “winning” at SimCity? Have you personally built cities that you would define as particularly successful within the game, and, if so, what made them “winners”?

Librande: For sure, there is no way to win at SimCity other then what you decide to put into the game. If you come in with a certain goal in mind—perhaps, say, that you want a high approval rating and everyone should be happy all the time— then you would play very differently than if you went in wanting to make a million dollars or have a city with a million people in it.

As far as my personal city planning goes, it has varied. I’ve played the game so much, because early on I just had to play every system at least once to understand it. I tried to build a power city, a casino city, a mining city—I tried to build one of everything.

Now that I’m done with that phase, and I’m just playing for fun at home, I’ve learned that I enjoy mid-density cities much more then high-density cities. To me, high-density cities are just a nightmare to run and operate. I don’t want to be the mayor of New York; I want to be the mayor of a small town. The job is a lot easier!

Basically, I build in such a way as to not make skyscrapers. At the most, I might have just one or two because they look cool—but that’s it.


Screenshot from SimCity 4.

Manaugh: I’m curious how you dealt with previous versions of SimCity, and whether there was any anxiety about following that legacy or changing things. What are the major innovations or changes in this version of the game, and what kinds of things did you think were too iconic to get rid of?

Librande: First of all, when we started the project, and there were just a few people on the team, we all agreed that we didn’t want this game to be called SimCity 5. We just wanted to call it SimCity, because if we had a 5 on the box, everybody would think it had to be SimCity 4 with more stuff thrown in. That had the potential to be quite alienating, because SimCity 4 was already too complicated for a lot of people. That was the feedback we had gotten.

Once we made that title decision, it was very liberating—we felt like, “OK, now we can reimagine what the brand might be and how cities are built, almost from scratch.”

Technically, the big difference is the “GlassBox” engine that we have, in which all the agents promote a bottom-up simulation. All the previous SimCity games were literally built on spreadsheets where you would type a number into a grid cell, and then it propagated out into adjacent grid cells, and the whole city was a formula.

SimCity 4 was literally prototyped in Excel. There were no graphics—it was just a bunch of numbers—but you could type a code that represented a particular type of building and the formulae built into the spreadsheet would then decide how much power it had and how many people would work there. It just statically calculated the city as if it were a bunch of snapshots.


A fire breaks out in the city designed by We Are The Champignons.

Because our SimCity—the new SimCity—is really about getting these agents to move around, it’s much more about flows. Things have to be in motion. I can’t look at anybody’s city as a screenshot and tell you what’s going on; I have to see it live and moving before I can fully understand if your roads are OK, if your power is flowing, if your water is flowing, if your sewage is getting dumped out, if your garbage is getting picked up, and so on. All that stuff depends on trucks actually getting to the garbage cans, for example, and there’s no way to tell that through a snapshot.


Sims queue for the bus at dawn.

Once we made that decision—to go with an agent-driven simulation and make it work from the bottom up—then all the design has to work around that. The largest part of the design work was to say: “Now that we know agents are going to run this, how do schools work with those agents? How do fire and police systems work with these agents? How do time systems work?” All the previous editions of SimCity never had to deal with that question—they could just make a little table of crimes per capita and run those equations.

Manaugh: When you turned things over to the agents, did that have any kind of spatial effect on game play that you weren’t expecting?

Librande: It had an effect, but it was one that we were expecting. Because everything has to be in motion, we had to have good calculations about how distance and time are tied together. We had to do a lot of measurements about how long it would really take for one guy to walk from one side of the city to the other, in real time, and then what that should be in game time—including how fast the cars needed to move in relationship to the people walking in order to make it look right, compared to how fast would they really be moving, both in game time and real time. We had all these issues where the cars would be moving at eighty miles an hour in real time, but they looked really slow in the game, or where the people were walking way, way too fast, but actually they were only walking at two miles an hour.

We knew this would happen, but we just had to tweak the real-life metrics so that the motion and flow look real in the game. We worked with the animators, and followed our intuition, and tried to mimic the motion and flow of crowds.


We Are The Champignons' industrial zone, carefully positioned downwind of the residential areas.

In the end, it’s not one hundred percent based on real-life metrics; it just has to look like real life, and that’s true throughout the game. For example, if we made the airport runways actual size, they would cover up the entire city. Those are the kinds of things where we just had to make a compromise and hope that it looked good.

Twilley: Actually, one of the questions we wanted to ask was about time in the game. I found it quite intriguing that there are different speeds that you can choose to play at, but then there’s also a distinct sense of the phases of building a city and how many days and nights have to pass for certain changes to occur. Did you do any research into how fast cities change and even how the pace of city life is different in different places?

Librande: We found an amazing article about walking speeds in different cities. That was something I found really interesting. In cities like New York, people walk faster, and in medium-sized or small towns, they walk a lot slower. At one point, we had Sims walking faster as the city gets bigger, but we didn’t take it that far in the final version.



I know what you are talking about, though: in the game, bigger cities feel a lot busier and faster moving. But there’s nothing really built into the game to do that; it’s just the cumulative effect of more moving parts, I guess. In kind of a counter-intuitive way, when you start getting big traffic jams, it feels like a bigger, busier city even though nothing is moving—it’s just to do with the way we imagine rush-hour gridlock as being a characteristic of a really big city.

The fact that there’s even a real rush hour shows how important timing is for an agent-based game. We spent a lot of time trying to make the game clock tick, to pull you forward into the experience. In previous SimCities, the day/night cycle was just a graphical effect—you could actually turn it off if you didn’t like it, and it had no effect on the simulation. In our game, there is a rush hour in the morning and one at night, there are school hours, and there are shopping hours. Factories are open twenty-four hours a day, but stores close down at night, so different agents are all working on different schedules.



The result is that you end up getting really interesting cycles—these flows of Sims build up at certain times and then the buses and streets are empty and then they build back up again. There’s something really hypnotic about that when you play the game. I find myself not doing anything but just watching in this mesmerized state—almost hypnotized—where I just want to watch people drive and move around in these flows. At that point, you’re not looking at any one person; you’re looking at the aggregate of them all. It’s like watching waves flow back and forth like on a beach.

For me, that’s one of the most compelling aspects of our game. The timing just pulls you forward. We hear this all the time—people will say, “I sat down to play, and three hours had passed, and I thought, wait, how did that happen?” Part of that is the flow that comes from focusing, but another part of it is the success of our game in pulling you into its time frame and away from the real-world time frame of your desk.



Twilley: Has anything about the way people play or respond to the game surprised you? Is there anything that you already want to change?

Librande: One thing that amazed me is that, even with the issues at the launch, we had the equivalent of nine hundred man-years put into SimCity in less than a week.

Most of the stuff that people are doing, we had hoped or predicted would happen. For example, I anticipated a lot of the story-telling and a lot of the creativity—people making movies in the cities, and so on—and we’re already seeing that. YouTube is already filled with how-to videos and people putting up all these filters, like film noir cities, and it’s just really beautiful.


Screen shot from SimCity player Calvin Chan's film noir montage of his city at night.

The thing I didn’t predict was that, in the first week, two StarCraft players—that’s a very fast-paced space action game, in case you’re not familiar with it, and it’s fairly common for hardcore players to stream their StarCraft battles out to a big audience—decided to have a live-streamed SimCity battle against each other. They were in a race to be the first to a population of 100,000; they live-streamed their game; and there were twenty thousand people in the chat room, cheering them on and typing in advice—things like “No, don’t build there!” and “ What are you doing—why are you putting down street cars?” and “Come on, dude, turn your oil up!” It was like that, nonstop, for three hours. It was like a spectator sport, with twenty thousand people cheering their favorite on, and, basically, backseat city planning. That really took me by surprise.

I’m not sure where we are going to go with that, though, because we’re not really an eSport, but it seems like the game has the ability to pull that out of people. I started to try to analyze what’s going on there, and it seems that if you watch people play StarCraft and you don’t know a lot about it, your response is going to be something like, “I don’t know what I’m looking at; I don’t know if I should be cheering now; and I don’t know if what I just saw was exciting or not.”

But, if you watch someone build a city, you just know. I mean, I don’t have to teach you that putting a garbage dump next to people’s houses is going to piss them off or that you need to dump sewage somewhere. I think the reason that the audience got so into it is that everyone intuitively knows the rules of the game when it comes to cities.


On a tip from Nick Blomstrand, one of the students from Unit 11 at the Bartlett School of Architecture, with whom Venue had the pleasure of traveling through Florida for a week while they did research for their various design projects, we stopped by the former hollow-earth cult settlement—and now state historic site—in the purpose-built town of Estero.



Estero was founded in 1894 by Dr. Cyrus Reed Teed, who, following a spiritual awakening, renamed himself Koresh. The National Park Service (PDF) describes Estero as "a 19th-century post-Christian communistic utopian community."

The meandering but precisely designed network of paths laid down to connect buildings on the coastal site were all paved with hundreds of thousands of seashells so that the walkways could reflect moonlight, a geometric garden illuminated by the sky.



One of the central beliefs of the Koreshan community was that human beings live on the convex inner surface of a vast hollow sphere, with the sun and stars all burning inside, at a central point around which the surface of the earth is wrapped.

Image courtesy of the Koreshan Unity Collection of the Florida Memory Blog.

To demonstrate the concept, Koresh produced several small models: globes within globes that he then took with him to various fairs and public lectures, seeking to find (or to convert) fellow planetary free-thinkers.

Dr. Cyrus Teed and his hollow-earth globes at the Pan American Expo in Buffalo, New York, 1901; image courtesy of the Koreshan Unity Collection of the Florida Memory Blog.

As it happens, hollow earth cults were not, in fact, entirely uncommon for the era—Jules Verne's classic science fiction novel Journey to the Center of the Earth, for example, exhibits tinges of hollow earth thinking and even Edgar Allan Poe's "Descent into the Maelstrom" was influenced by ideas of a hollow earth with hidden entrances, amidst great and dangerous landscapes, at the earth's poles.

Indeed, as David Standish writes in his book Hollow Earth: The Long and Curious History of Imagining Strange Lands, Fantastical Creatures, Advanced Civilizations, and Marvelous Machines Below the Earth's Surface, it was Sir Edmund Halley, of Halley's Comet, who "gave us our first scientific theory of the hollow earth—in his formulation, consisting of independently turning concentric spheres down there, one side the other. Halley arrived at this notion, which he presented to the prestigious Royal Society of London, to account for observed variations in the earth's magnetic poles. His true imaginative leap, however, lay in the additional thought that these interior spheres were lit with some sort of glowing luminosity, and they they might well be able to support life. Generations of science fiction writers"—not to mention "communistic" utopians—"have been thankful to him for this ever since."



However, the Koreshan community at Estero sought to make good on the spiritual-scientific promise of these theories by taking them one step further into the realm of empirical testing and experimentation. That is, they attempted to prove, by way of homemade geodetic instrumentation and other landscape survey tools, that the earth is hollow and that, as they describe it, "we live inside."

Image courtesy of the Koreshan Unity Collection of the Florida Memory Blog.

Enter the so-called Rectilineator, a massive measuring rod—or, as science writer Frank Swain joked recently at a talk in Amsterdam, "a really big ruler"—that could be easily assembled and disassembled in large modular sections. Thus advancing down the smooth sloping beaches of south Florida, the Rectilineator would gradually do one of two things: either 1) it would depart from the earth's surface, thus proving that the earth, alas, was the way everyone else said it was and that we lived on the outside of a concave sphere, or 2) it would move closer and closer to the earth's surface, thus proving, on the contrary, that the Koreshans were correct and that the earth's surface was convex, slowly curving up into the sky, thus proving that we live inside a hollow earth.

The Rectilineator in action.

It should not come as a surprise to learn that the Koreshan beach survey of 1897 "proved" that the earth was hollow, thus vindicating Dr. Cyrus Teed in the eyes of the people who had followed him to what was, at the time, a subtropical backwater in a thinly populated state.

A module from the Rectilineator; image courtesy of the Koreshan Unity Collection of the Florida Memory Blog.

Things went downhill, so to speak, from there. After an ill-advised step into local politics, and a disastrous miscommunication with the local police force, Dr. Cyrus Teed was beaten to death, his theorized resurrection never came, and the cult slowly disbanded, leaving their settlement behind, intact, a town full of pseudo-scientific surveying tools abandoned to the swamp.



In 1976, what remained of the site was cleaned up and added to the National Register of Historic Places, becoming the Koreshan Unity Settlement Historic District. You can now visit the site—located alarmingly close to a freeway—and walk the shell-paved paths, wandering from cottage to cottage past a number of small historic displays, trying to tune out the sounds of passing cars.



Briefly, the aforementioned science writer Frank Swain, while discussing the Koreshan Unity settlement and the Rectilineator they used to measure the curving earth, provocatively compared their survey tools to NASA's so-called LISA satellite mission, which is, in Swain's words, also "a really big ruler" in space.

The LISA mission, more specifically, will use three laser-connected satellites placed five million kilometers apart in deep space to measure gravitational waves and the warp & weft of spacetime itself—a kind of Rectilineator amidst the stars, proving or disproving whatever theories we care to throw at it.


While in Denver, Colorado, Venue had the pleasure of making a childhood fantasy come true: an all-day backstage pass to the city's public library, complete with a private introduction to room after room full of maps, books, paintings, photographs, architectural drawings, and other collections documenting the people, places, and events that shaped the settlement and growth of the western United States.

The Denver Public Library building, designed by Michael Graves & Associates.

From a meandering tour of the new Postmodern library building, designed by architect Michael Graves in the 1990s, to a covetous browse through the city's old fire-insurance maps produced by the Sanborn Map Company, via a quick mention of the Denver Police Intelligence Files and a thorough bibliography of reference materials related to Denver's saloon cats, it was an exhilarating day of flipping through card catalogs, stepping behind closed doors, following off-limits stairways up to archives not usually open to the public, and learning more not only about the history of Denver and the West, but also about library science, more generally, and about our guide for the day, Senior Special Collection Librarian Wendel Cox, more specifically.

Venue's vote for best card catalog entry ever—a Franz Feneon-worthy novel in two lines, filed under "Horses. Biography."—was brought to our attention by Wendel Cox.

There's no real way, however, without writing our own Ulysses of the Denver Public Library—describing every unexpected turn of conversation, every artifact, every cross-connected historical reference (rabies to quarantine to the library's medical collections) and every other thing seen, read, or pored over in nose-to-paper levels of detail during the day—to encapsulate all that took place during Wendel's enthusiastic introduction to the collections; so, instead, we'll just focus on a few particular highlights, cartographic in emphasis and origin.

Senior Special Collection Librarian Wendel Cox shows us a hand-drawn map of New Mexico and Utah.

First, the fire maps.



The Sanborn Map Company produced, between 1866 to 2007, some of the most extraordinary and historically useful maps of the urban United States available in any collection today.



Almost all major municipal libraries in the country maintain voluminous back-stocks of them, their heavy pages over time thickened past the point of bendability by endless glued layer after layer of property updates, infrastructural upgrades, new construction, and the entire re-routing of streets and whole neighborhoods at a time.



Peeling, partially unstuck, and warped into curling waves like oceans, the pages play host to a century or more of built structures, renovations, and replacements, keeping close tabs on what can be insured, for how much, and under what circumstances.



These Sanborn maps are as near-total a catalog of the city's development over time as can be cartographically imagined, with almost every square inch built up into thick scabs of structures upon structures, upon even more structures.

Every pasted edge conceals a preserved strata of earlier revisions and additions, all but daring us to pick at it (we resisted), tempting us to pull ever so slightly at the looser corners, to lift up the surface layer and reveal the other city—there is the city and then there is the city, as novelist China Miéville might describe it, the two, surreally, existing in the same place at the same time—that lies beneath today's Denver, with its competing but complimentary property lines, a city out of synch with itself as you peel away the layers of history.



Each page, as Wendel showed us, turning carefully through the old volumes, is like a plank of wood at this point, archaeologies of layers laminated into something almost more like furniture.

These are books as Kafka might imagine them: enormous, absurd, and so preposterously heavy with the details of local history as to be physically unmanageable. They are books that could wound the librarians who handle them, slipping discs and offsetting spines, causing even historians to second-guess turning their pages.



But this (exaggerated) sense of physical threat is, of course, echoed in the book's content: as we navigated Denver's neighborhoods, we developed a sense for the city as a place of fire risks and dangerous proximities, a city of escape-assisting back alleys counter-balanced by wood-framed meeting halls, its spaces rated for their performance during events of conflagration.

And, in the process, we saw the city as a series of surfaces built up over time, fractally expanding across the Front Range.



The second thing—of many things—worth mentioning was a decidedly less antique item from the collection: a map and pamphlet, produced by the U.S. Geological Survey and compiled by Glenn R. Scott between 1972 and 2004, called Historic Trail Maps in Eastern Colorado and Northeastern New Mexico (you can download the accompanying 45mb PDF here).



As the map's introduction, written by former USGS Director Charles G. Groat—who recently resigned from the University of Texas in a controversy over financial ties to the fracking industry—explains, many of the "historic trails that were the primary pathways used by pioneers to open the Western United States" have been forgotten or erased entirely.

These trails, he continues, "have names that remain familiar today—Santa Fe, Overland, Cherokee, Trappers, Republican Fork, and Smoky Hill Trails. Some of those historic trails have long-since vanished or are now only faintly visible on today’s landscape."

Scott's map and pamphlet are thus an act of preservation, the USGS explains, saving for future generations the wide range of "historic marks left on the land by Native Americans, trappers, prospectors, early road builders, and settlers from about the 1820s to about 1900."

Put another way, Scott made a map of lost roads.

A long slice of the Glenn R. Scott's USGS map, showing lost roads, trails, and camps to the south and east of Denver, Colorado.

As Groat writes in his introduction to Scott's work, the routes and place-names gathered on the map tell the human history and usage of the Coloradan landscape:

Features of the maps include trails used by Native American tribes and trappers before the arrival of European settlers. As the westward movement continued, trading posts, immigrant and prospector trails, stagecoach lines and stage stations, wagon roads, and railroads marked that expansion, and those features are shown on the maps. From the cattle trails and trails over mountain passes to the towns and military camps and forts, the settlement and use of these lands are captured for posterity. Routes taken by prospectors during the great 1859 Gold Rush to the Pikes Peak gold fields are portrayed, as are the world-famous mining camps that followed, including Central City, Blackhawk, Idaho Springs, Georgetown, Fairplay, Aspen, Breckenridge, Leadville, and Cripple Creek. In addition, the routes traversed by early explorers such as Zebulon M. Pike, Stephen H. Long, and John C. Fremont are shown on the maps. The maps reflect the Hispanic and French heritage of much of the region, and the rich history of New Spain, Mexico, and France are imprinted in the names of numerous mountain ranges, prominent peaks, valleys, rivers, and towns.

Scott's own story, meanwhile, is fascinating—equal parts folklore and geological survey of the American West:

Beginning in 1964, Scott realized that in addition to relating the geologic record there was an entirely different story he also wanted to tell. He was fascinated by the historic trails he encountered during his geology fieldwork—trails used by Native Americans and by pioneers and prospectors who settled in Colorado and New Mexico. He resolved to document those trails before they forever vanished. Using aerial photographs, long forgotten historical archives, and other historical texts, he located historic trails all over eastern Colorado and northern New Mexico, and in 1972 he published the first of his 11 historic trail maps.




Indeed, in a nicely circular reference, Scott himself writes that "most of the information I used came from the Denver Public Library, where I was a volunteer in the Genealogy and Western History Department." At the risk of over-using the analogy, he was a kind of James Joyce of the eastern Rockies, going back through deeds of sale, acts of incorporation for now defunct road-building companies, and, no doubt, Sanborn maps, in search of old ways across the landscape.

In a much longer pamphlet listing the sources used for his map, Scott gives some examples of the sorts of narrative coordinates that are all that remains of certain trails:

Starting at Bergen's house and down the gulch southeastward by the Hendershott's house to Myer's Mill on Bear Creek thence by the most practicable route by Luther's place and Parmalee's sawmill to the Turkey Creek Road at the mouth of the gulch opposite Parmalee's water mill on Turkey Creek.

Or:

From Boulder City, Boulder County, up and along north side of North Boulder Creek as far as practicable and best route to Central City, Gilpin County.

To which he occasionally adds his own surreal story-form updates, as if the information presented is now that much clearer:

Route was changed as follows: from American Avenue on the west bound- ary of Empire City extending 3 miles up the south bank of Clear Creek, then crossing and extending 3/4 mile up the north bank, recrossing and then 700 feet up the south bank, recrossing and then continuing up the north bank on the route designated in the original article, then up to and thru Vasquez Pass, then on the original route to Bangs or Corral Creek, the western terminus in the original article, then outside the area.

Perhaps most evocative of all, there are also entries that simply read:

Route unknown.



These are the "old ways," as author Robert Macfarlane describes the similarly forgotten trails and routes that spider the landscape of the United Kingdom. In his book of that name, Macfarlane writes that, "once you begin to notice them, you see that the landscape is still webbed with paths and footways—shadowing the modern-day road network, or meeting it at a slant or perpendicular. Pilgrim paths, green roads, drove roads, corpse roads, trods, leys, dykes, drongs, warns, snickets—say the names of paths out loud and at speed and they become a poem or rite—holloways, bostles, shutes, driftways, lichways, ridings, halterpaths, cartways, carneys, causeways, herepaths."

The incantatory geography that Macfarlane refers to is in Britain, but, as Glenn R. Scott's map shows, the prairies, hills, and mountains of the American southwest have their own slowly eroding memory bank of old ways seamed into the ground by human feet, horses, and post wagons.



Briefly, Scott's labyrinthine explorations of trail folklore and historical cartography in Colorado also brings to mind a story published nearly five years ago in The New York Times, on an effort by Vermont's towns and cities to catalog their "ancient roads."

As the Times explained, a 2006 state law had given Vermont residents a strong incentive to rediscover their state's buried and forgotten throughways by allowing municipalities to claim them as official town lands (thus ensuring that they remain as public lands, unable to be claimed by private landowners). As a result, the Times reported, "citizen volunteers are poring over record books with a common, increasingly urgent purpose: finding evidence of every road ever legally created in their towns, including many that are now impassable and all but unobservable."

These "elusive roads"—many of them "now all but unrecognizable as byways"—are lost routes, connecting equally erased destinations. In almost all particular cases, they have barely even left a trace on the ground; their presence is almost entirely textual. They are not just lost roads, in other words, mere unstable geographies flashing in and out of county land registers. They are road that have been deterrestrialized: scrubbed from the surface of the earth.

As the Times acknowledges, "Even for history buffs, the challenge is steep: evidence of ancient roads may be scattered through antique record books, incomplete or hard to make sense of." Accordingly:

Some towns, content to abandon the overgrown roads that crisscross their valleys and hills, are forgoing the project. But many more have recruited teams to comb through old documents, make lists of whatever roads they find evidence of, plot them on maps and set out to locate them.

Like something out of the geography-obsessed poetry of Paul Metcalf—part map, part deep social history, part regional etymology for re-reading place names as the myths that they are—the descriptions found in these old municipal documents are narrative, impressionistic, and vague, perfectly in tune with what Glenn R. Scott found in Colorado.

Returning to The New York Times, for instance, these descriptions "might be, 'Starting at Abel Turner’s front door and going to so-and-so’s sawmill,' said Aaron Worthley, a member of the ancient roads committee in Huntington, southeast of Burlington. 'But the house might have burned down 100 years ago. And even if not, is the front door still where it was in 1815? These are the kinds of questions we’re dealing with.'"

As Wendel told us, these sorts of cryptic references to lost byways are not only of interest to local historians—attorneys form another interest group who consult the Denver Public Library's archives with some frequency. In Vermont, too, the Times reports that these acts of perambulatory interpretation came to be part of a much larger, although fairly mundane, attempt to end "fights between towns and landowners whose property abuts or even intersects ancient roads."

In the most infamous legal battle, the town of Chittenden blocked a couple from adding on to their house, saying the addition would encroach on an ancient road laid out in 1793. Town officials forced a showdown when they arrived on the property with chain saws one day in 2004, intending to cut down trees and bushes on the road until the police intervened.

The article here goes on to refer to one local, a lawyer, who explains that "he loved getting out and looking for hints of ancient roads: parallel stone walls or rows of old-growth trees about 50 feet apart. Old culverts are clues, too, as are cellar holes that suggest people lived there; if so, a road probably passed nearby." Think of it as landscape hermeneutics: peeling back the layers in the map to reveal a vanished landscape.


"Botanical Profile representing the Forest Trees along the route explored by Lieut. A. W. Whipple, Corps. of Top. Eng., near the Parallel of 35º North Latitude, 1853-1854." Prepared by J. M. Bigelow, M.D., Botanist to the Expedition. U.S. Pacific Rail Road Exploration & Survey, War Department.

Wendel led us on through the archive's sedimentary record of human movement across the Coloradan landscape, from a filing cabinet stuffed full of railroad timetables and accident records to an overflowing folder of newspaper clippings on Denver International Airport conspiracy theories. A mournful subsection focused on anticipatory documentation of future erasures: a gorgeous 1854 botanical profile of a proposed U.S. Pacific railway route and the business-like binders of the much more recent I-25 environmental impact assessment.



Our day in the Denver Public Library was itself a kind of lost trail, as we noted with amusement that various quirks of the building made it hard to remember which stairwell we had taken to get to a certain floor—and, thus, whether we could even access that floor or the collections Wendel Cox had in mind for us—and it became abundantly clear that even libraries have their own kind of curatorial folklore, a personal but by no means written down knowledge of where to find certain books, objects, files, or collections, what those artifacts, in turn, mean for other things encountered in the archive, and how certain narrative strands tie a library, and a landscape, together from within.

Many thanks to Myra Rich for suggesting that Venue should meet with Wendel Cox, and for making the introduction, as well as to Wendel himself, for sharing his time and knowledge so generously. This post contains a few paragraphs previously published on BLDGBLOG.


Biscayne Bay is home to the cities of Miami and Miami Beach, the Port of Miami (from which one in every seven cruise passengers in the world departs), a 172,000 acre National Park that includes the NPS's only underwater archaeological trail, and more than a dozen islands, many of which are artificial.

It is also the site of a curious collection of stilt houses, perched on sand flats a mile offshore from the Cape Florida lighthouse.



Venue had an opportunity to circle Stiltsville, as the cluster of wooden shacks on pilings is called, aboard a History Miami charter boat. We were accompanied the ceaseless narrative patter of local historian Dr. Paul George.



There are currently seven stilt houses in total, but this number has been whittled down, we learned from Dr. George's litany of fires and hurricanes, from an all-time high of twenty-seven structures in the 1960s.



The pastel buildings seem to hover above the greenish water; from a distance, they even appear to be boats. As you approach them, the stilt houses pass through a curious combination of stages, seemingly a mirage one minute, a child's drawing of a house, all boxes and triangles, the next.

They are sufficiently far from each other to seem utterly isolated, yet sufficiently far from anything else to coalesce into a community.



Although the details are murky, legend has it that Stiltsville's first shack was built by "Crawfish" Eddie Walker in 1933. In addition to bait, beer, and crawfish chowder, Eddie's island kingdom also offered gambling, which was apparently legal if located at least one mile offshore.

This story, perhaps, is responsible for the various rumors and urban legends that surround Stiltsville, including the idea that the houses had deliberately been constructed outside U.S. territorial waters in order to form a kind of free state off the coast of south Florida—architecture as pirate haven, micronation, and "seastead" all in one. At the very limits of the nation-state, this (somewhat overblown) version of Stiltsville's origin story goes, strange new architectures take shape on the horizon, with the continental shelf as subtropical autonomous zone.



In any case, by the late 1930s and early 40s, we learned, Crawfish Eddie's gambling shack was joined by a handful of other social clubs, whose members also appreciated the legal leeway that came with distance from the mainland.

The Quarterdeck, for instance — an invitation-only private gentlemen's club built across a collection of pilings and barges — welcomed Miami's wealthy and well-connected for drinks and, rumor has it, more. A 1941 article in LIFE magazine described the club as "a $100,000 play-palace equipped with bar, lounge, bridge deck, dining room and dock slips for yachts."



The 1960s era Bikini Club — a grounded yacht that offered free drinks for women in its namesake attire and operated without the bother of a liquor license — only added to Stiltsville's hard-partying renegade reputation.



Nonetheless, in accordance with the handful of possible fates that seem eventually, inevitably, to befall all Stiltsville structures, Crawfish Eddie's blew away in a hurricane, the Quarterdeck burned down, and the Bikini Club was busted and ultimately shut down by the vice squad.

Meanwhile, as our guide put it, Miami's "frontier era" was drawing to a close. After Hurricane Betsy, in 1965, the state issued formal leases for the bay bottom and refused to permit any new structures. In 1976, the state renewed those leases, but inserted an expiry date of 1999, after which any remaining stilt houses would need to be removed at the owners' expense.



The seven remaining structures now stand within the boundaries of Biscayne National Park, and, after a lengthy battle, the NPS has agreed not to demolish what is left of Stiltsville. Instead, the houses sit in limbo, awaiting the outcome of a promise to develop a preservation and public access plan, including an artist-in-residence program, park education facilities, and community gatherings.



In addition to the faded glamor of its bohemian past, Stiltsville retains a liminal feel today — a sense of suspension from everyday rules and concerns that comes from being far enough away from shore for civilization to still be in view but with its effects much diminished.

In some ways, however, the real charm of Stiltsville is precisely its evanescence. As we made our way back to the city's shore, the shacks in our wake seemed less like four-walled houses, and more like spindly-legged, brightly-colored wading birds, tiny and temporary in the vast blue-green expanse of the bay and sky.
According to Jack Chambers, proprietor of the Sonoma Valley Worm Farm and a former Delta Air Lines pilot, when he got in the cockpit of a 747, "the other guys would have second homes and boats and be into golf. But I was the worm guy."


Venue visited Chambers on a sunny September afternoon, and, as he showed us around the farm, he explained that his worm obsession began, straightforwardly enough, as a gardening hobby. A friend told him about a local farmer who had earthworms for sale, and so, twenty years ago, in 1992, Chambers paid a visit to Earl Schmidt, a former mink rancher, enthusiastic angler, and bait worm farmer.

Five days and one 5 gallon bucket of Red Wigglers (Eisenia fetida) later, Chambers' home compost pile was a rich, deep black color with a crumbly texture that he'd never been able to achieve before. He started hanging out with Earl, helping out in return for a chance to learn about worms.


As they picked worms side-by-side over the next three months, Earl told Chambers that he was looking forward to retirement and finally having the time to fish. Chambers, "without really knowing what I was getting into," found himself offering to buy the place.

A crash course in all things worm quickly followed, including a carefully scheduled layover in Vigo, Spain, to attend the World Worm Conference, and conversations with vermiculture pioneer and Ohio State University professor, Clive Edwards. Trial and error also played a role, with Chambers reminiscing about the "worm volcano" he accidentally created by experimenting with cornmeal as a feed — 50,000 disgusted worms all crawled over the sides of the bin at once, in a scene worthy of a horror movie. "Now, if I'm trying something new," explained Chambers, "I only add it to quarter of the bin, to leave room for escape."

Chambers credits his pilot's appreciation for standard operating procedures and checklists for many of the technical improvements he's introduced over the past twenty years. For example, in order to pre-compost the manure source and kill any pathogens or weed seeds before feeding it to the worms, Chambers arrived at his own design for a three-bin forced-air system, complete with a rigorously optimized schedule of turning, blowing, and releasing gases. "If I've done anything with worms," he says, "it's that."


That is certainly not all, though. As we moved under the corrugated steel sheds that house the farm's four million worms, Chambers explained that he realized early on that, in fact, "the vermicompost is the big deal, not the worms." In other words, rather than simply feeding worms in order to harvest them for sale to sport fishermen and gardeners, Chambers focused on marketing their castings, particularly to the region's high-end grape-growers.

To do so, he has built four ninety-foot long continuous flow vermicomposting bins, based on an original blueprint by Clive Edwards, but improved over the years to the point that he now has a patent pending on the design.


"This is high-tech for worms," explained Chambers, as he demonstrated his most recent iteration, the VermiComposter CF40. In sixty days, pre-composted manure will make its way from top to bottom of the four-foot deep bins through a continuous conveyor-belt system of worm digestion.

The raised bins are fed from the top twice per week, and harvested from the bottom once weekly using an automatic breaker bar. A wire mesh tumbler then separates the worms from their excretions; the worms go back in the bins and the remaining black gold is sold for a dollar a pound.


Earthworms are easy to overlook, but among those who do observe their work, they seem to inspire extreme devotion, counting among their historical fans both Aristotle and Charles Darwin. Chambers is equally enthusiastic. As we dug our hands into the warm, soft compost and watched the worms we had disturbed wriggle back into the darkness, he expounded on the mysteries of worm reproduction as well as numerous studies that have shown vermicompost's beneficial impact on germination rates, disease suppression, flavor, and even yield (up to a twenty percent increase for radishes, according to Clive Edwards' colleagues at Ohio State).


Vermicompost is typically used as a potting medium — Chambers' advice is to "put one cup in the hole with your seed or transplant" — or it can be brewed at 73 degrees for 24 hours to make a "compost tea" that can be sprayed onto the soil or plant directly. Although it is between four and fourteen times more expensive than regular compost, Chambers argues that, like a high-end skin product, vermicompost's benefits and economy of use make it well worthwhile:

I tell vineyards to think of it like insurance. After all, a vine costs about $3, and some vineyards lose as many as twenty percent of their new plantings. With our vermicompost, they usually lose less than one percent.


Chambers and his wife even planted four hundred vines of their own, losing only two, and they attribute their ongoing victory over powdery mildew to regular applications of compost tea. They make a very good "Worm Farm Red," that we were lucky enough to sample and that even won a gold medal in the amateur category at the 2008 Valley of the Moon Vintage Festival.

Sonoma Valley Worm Farm already makes more than 200,000 lbs of vermicompost a year, but Chambers took early retirement from Delta last year, and has big plans for the business. The day we visited, he had just finalized the agreements for a new facility that will more than double his capacity, as well as incorporate several new improvements to his existing equipment.


As we examined the architectural plans in Google SketchUp, Chambers described his vision for the next generation VermiComposter CF 40, which will include electronic moisture and temperature monitoring and automated feeding.

While he waits for the new facility to be built, he's already experimenting with feeding the worms an extra inch of compost per week, to see whether he can increase their productivity. Meanwhile, in response to interest from California's berry giant, Driscoll's, he's started working with compost tea-kettle manufacturers on a unit that could brew up to 250,000 gallons at a time. In fact, Chambers' only concern as he scales up, he told us, was what he would do when the worms' demand outstripped the manure supply of the organic dairy farm (Straus Family Creamery) that he currently works with.


Given that, last year, the EPA estimated that thirty percent of annual landfill contents could have been recycled through composting, and that California's dairy cows produce 30 million tons of manure annually, much of which is stored in waste lagoons where it risks contaminating groundwater, it seems as though feeding four or five million new worms is not going to be much of a challenge at all. The fact that those worms will not only remove that waste from the environment, but also transform it into something that scientists are calling "pretty amazing stuff," as well as "the next frontier in biocontrol," is even better.

Chambers told us that he is convinced that "worms are going to be the next big thing in agriculture." If we're smart, it will be.
 
  Getting more posts...